

República de Colombia

MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE

Corporación Autónoma Regional del Tolima, CORTOLIMA

OLGA LUCIA ALFONSO LANNINI

Directora General

JOSÉ ALEXANDER GRIJALBA CASTRO

Subdirector de Planificación Ambiental y Desarrollo Sostenible

Grupo de Investigación en Zoología, Universidad del Tolima

FRANCISCO ANTONIO VILLA NAVARRO

Coordinador del Proyecto

SERGIO LOSADA PRADO

Coordinador General

GLADYS RFINOSO FLÓRF7

Coordinadora

GIOVANY GUEVARA CARDONA

Coordinador

Fotografías y texto

Grupo de Investigación en Zoología de la Universidad del Tolima (GIZ, 2022)

CORTOLIMA

Nit: 890.704.536-7.

PBX: +57(8) 265 5378-2654553

Dirección: Av. Ferrocarril Calle 44 Esquina-Ibagué, Colombia.

Universidad del Tolima

Nit 890.700.640-7

PBX +57(8) 2 771212

B. Santa Helena Parte Alta. A. A. 546-lbagué, Colombia.

EQUIPO TÉCNICO

Coordinador General

Sergio Losada Prado Grupo de Investigación en Zoología

Universidad del Tolima

Francisco Antonio Villa Navarro Coordinador del Proyecto

Giovanny Guevara Cardona Coordinador

Gladys Reinoso Flórez Coordinadora

Jessica Nathalia Sánchez Guzmán Coordinadora Técnica del

Proyecto

Liliana Rondón Salazar Área: Servicios ecosistémicos

Michael Alejandro Castro Bonilla Área: Flora

Francisco Antonio Villa Navarro Área: Ictiología

Edwin Orlando López Delgado

Sergio Losada Prado Área: Herpetología

Leidy Azucena Ramírez Fráncel

Sergio Losada Prado Área: Ornitología

Jessica Nathalia Sánchez Guzmán

Gladys Reinoso Flórez Área: Lepidópteros diurnos

Katerine Cañas Arbeláez

Giovany Guevara Cardona Área: Mastozoología

Leidy Azucena Ramírez Fráncel

Henry Giovanni Rubiano Sotelo Área: Batimetría e Hidrología

Iván Orlando Moreno González

Subdirección de Planificación

José Alexander Grijalba Castro Ambiental y Desarrollo Sostenible

CORTOLIMA

CONTENIDO

INTRODUCCIÓN	9
MARCO TEÓRICO	11
LOS HUMEDALES	11
RESTAURACIÓN ECOLÓGICA Y REHABILITACIÓN AMBIENTAL	12
ESTRATEGIAS PARA LA RESTAURACIÓN ECOLÓGICA DE LOS HUMEDALES	14
NORMATIVIDAD	17
OBJETIVOS	23
OBJETIVO GENERAL	23
OBJETIVOS ESPECÍFICOS	23
1. LOCALIZACIÓN Y CLASIFICACIÓN	25
1.1. UBICACIÓN GEOGRÁFICA	25
1.2. CLASIFICACIÓN Y CATEGORIZACIÓN DEL HUMEDAL	27
2. COMPONENTE FÍSICO	29
2.1. GEOMORFOLOGÍA Y SUELOS	29
2.2. CLIMA	30
2.2.1. Precipitación.	30
2.2.2. Temperatura.	33
2.2.3. Evapotranspiración de referencia (ETo) y real (ETr).	37
2.3. HIDROGRAFÍA	39
3. COMPONENTE BIÓTICO	41
3.1. FLORA	41
3.1.1. Marco teórico.	41
3.1.2. Metodología.	45
3.1.2.1. Fitoplancton.	45

Plan de Manejo Ambiental (PMA) Humedal La Moya de Enrique

3.1.3.1. Fitoplancton. 3.1.3.2. Flora. B. Especies de interés para la conservación. 3.2. FAUNA 3.2.1. Marco teórico. 3.2.1.1. Zooplancton. 3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.2.8. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.1.2.2. Flora.	47
3.1.3.2. Flora. B. Especies de interés para la conservación. 3.2. FAUNA 3.2.1. Marco teórico. 3.2.1.1. Zooplancton. 3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.2.8. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.1. Zooplancton. 3.2.3.3. Lepidópteros. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.1.3. Resultados-Flora presente en el humedal. (Anexo A)	49
B. Especies de interés para la conservación. 3.2. FAUNA 3.2.1. Marco teórico. 3.2.1.1. Zooplancton. 3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.2.8. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.1.3.1. Fitoplancton.	49
3.2. FAUNA 3.2.1. Marco teórico. 3.2.1.1. Zooplancton. 3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.2.8. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.1.3.2. Flora.	50
3.2.1. Marco teórico. 3.2.1.1. Zooplancton. 3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.2.8. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2.2.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	B. Especies de interés para la conservación.	52
3.2.1.1. Zooplancton. 3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2. FAUNA	53
3.2.1.2. Macroinvertebrados. 3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.2.8. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2.1. Marco teórico.	53
3.2.1.3. Lepidópteros. 3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3.1. Zooplancton. 3.2.3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2.1.1. Zooplancton.	53
3.2.1.4. Ictiofauna. 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3.1. Zooplancton. 3.2.3.2. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2.1.2. Macroinvertebrados.	55
 3.2.1.5. Herpetofauna. 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.1.3. Lepidópteros.	56
 3.2.1.6. Avifauna. 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.1.4. Ictiofauna.	58
 3.2.1.7. Mastofauna. 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.1.5. Herpetofauna.	60
 3.2.2. Metodología. 3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.1.6. Avifauna.	63
3.2.2.1. Zooplancton. 3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2.1.7. Mastofauna.	66
3.2.2.2. Macroinvertebrados. 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2.2. Metodología.	69
 3.2.2.3. Lepidópteros. 3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.2.1. Zooplancton.	69
3.2.2.4. Ictiofauna. 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna.	3.2.2.2. Macroinvertebrados.	70
 3.2.2.5. Herpetofauna. 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.2.3. Lepidópteros.	72
 3.2.2.6. Avifauna. 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.2.4. Ictiofauna.	74
 3.2.2.7. Mastofauna. 3.2.3. Resultados-Fauna presente en el humedal. 3.2.3.1. Zooplancton. 3.2.3.2. Macroinvertebrados. 3.2.3.3. Lepidópteros. 3.2.3.4. Ictiofauna. 	3.2.2.5. Herpetofauna.	77
3.2.3. Resultados-Fauna presente en el humedal.3.2.3.1. Zooplancton.3.2.3.2. Macroinvertebrados.3.2.3.3. Lepidópteros.3.2.3.4. Ictiofauna.	3.2.2.6. Avifauna.	80
3.2.3.1. Zooplancton.3.2.3.2. Macroinvertebrados.3.2.3.3. Lepidópteros.3.2.3.4. Ictiofauna.	3.2.2.7. Mastofauna.	83
3.2.3.2. Macroinvertebrados.3.2.3.3. Lepidópteros.3.2.3.4. Ictiofauna.	3.2.3. Resultados-Fauna presente en el humedal.	87
3.2.3.3. Lepidópteros.3.2.3.4. Ictiofauna.	3.2.3.1. Zooplancton.	87
3.2.3.4. Ictiofauna.	3.2.3.2. Macroinvertebrados.	88
	3.2.3.3. Lepidópteros.	89
3235 Herpetofauna	3.2.3.4. Ictiofauna.	92
c.z.c.c. Helpereracha.	3.2.3.5. Herpetofauna.	94
3.2.3.6. Avifauna.	3.2.3.6. Avifauna.	99
3.2.3.7. Mastofauna.	3.2.3.7. Mastofauna.	107
4. CALIDAD DEL AGUA 1	4. CALIDAD DEL AGUA	117

4.1. MARCO CONCEPTUAL	117
4.1.1. Factores fisicoquímicos y bacteriológicos de los humedales.	117
4.1.1.1. Temperatura.	118
4.1.1.2. Oxígeno disuelto.	118
4.1.1.3. Porcentaje de saturación de oxígeno (% O2).	118
4.1.1.4. Demanda biológica de oxígeno (DBO5).	119
4.1.1.5. Demanda química de oxígeno (DQO).	119
4.1.1.6. pH.	119
4.1.1.7. Conductividad eléctrica.	119
4.1.1.8. Turbidez.	119
4.1.1.9. Dureza.	120
4.1.1.10. Cloruros.	120
4.1.1.11. Nitrógeno, nitritos y nitratos.	120
4.1.1.12. Fósforo y fosfatos.	120
4.1.1.13. Sólidos suspendidos.	120
4.1.1.14. Sólidos totales.	121
4.1.1.15. Coliformes totales y fecales.	121
4.2. ÍNDICE DE CALIDAD DE AGUA (ICA).	121
4.3. METODOLOGÍA	122
4.3.1. Métodos de campo.	122
4.3.1.1. Parámetros fisicoquímicos.	122
4.3.1.2. Parámetros bacteriológicos.	122
4.3.2. Métodos de laboratorio.	122
4.4. ANÁLISIS DE RESULTADOS	123
5. VALORES DE USO Y SERVICIOS ECOSISTÉMICOS DEL HUMEDAL	127
5.1. INTRODUCCIÓN	127
5.2. METODOLOGÍA	128
5.3. RESULTADOS Y DISCUSIÓN	129
5.4. CONCLUSIONES	137
6. COMPONENTE AMBIENTAL	141

6.1. INTRODUCCIÓN	141
6.2. METODOLOGÍA	142
6.2.1. Transformación total (Orden de magnitud 1).	143
6.2.2. Perturbación severa (Orden de magnitud 2).	144
6.3. CLASIFICACIÓN DE IMPACTOS	145
6.3.1. Análisis cualitativo del humedal La Moya de Enrique.	147
6.4. ANÁLISIS DEL COMPONENTE AMBIENTAL	148
6.4.1. Transformación total de un humedal.	149
6.4.1.1. Reclamación de tierras.	149
6.4.1.2. Modificación completa de regímenes hidráulicos y reclamación físico del humedal.	n del espacio 149
6.4.1.3. Introducción o trasplante de especies invasoras.	150
6.4.2. Perturbación severa.	150
6.4.2.1. Control de inundaciones.	150
6.4.2.2. Contaminación.	150
6.4.2.3. Urbanización.	150
6.4.2.4. Sobreexplotación de recursos biológicos.	150
6.4.2.5. Represamiento o inundación permanente.	150
7. VALORACION Y EVALUACION	152
7.1. EVALUACIÓN ECOLÓGICA	152
7.1.1. Generalidades del humedal.	152
7.1.1.1. Tamaño y posición.	152
7.1.1.2. Conectividad ecológica.	152
7.1.2. Diversidad biológica.	152
7.1.3. Naturalidad.	153
7.1.4. Rareza.	153
7.1.5. Fragilidad.	154
7.1.6. Posibilidades de mejoramiento.	155
7.2. EVALUACIÓN SOCIOECONÓMICA Y CULTURAL	156
7.2.1. Conocimiento del humedal por los habitantes aledaños	156
7.2.1.1. Conocimiento del humedal.	157

Plan de Manejo Ambiental (PMA) Humedal La Moya de Enrique

7.2.1.2. Conocimiento de la fauna y la flora del humedal.	157
7.2.1.3. Funciones del humedal.	158
7.2.1.4. Actitud frente al humedal.	158
7.2.1.5. Acciones para la recuperación del humedal.	159
7.2.2. Valoración económica.	159
8. ZONIFICACIÓN DEL HUMEDAL	161
8.1. ZONIFICACIÓN AMBIENTAL	161
8.1.1. Aspectos metodológicos	161
8.1.1.1. Delimitación de área de estudio.	161
8.1.1.2. Escala de edición.	161
8.1.1.3. Sistemas de Información Geográfica.	162
8.1.1.4. Delimitación de los humedales.	164
8.1.1.5. Conservación de los humedales.	164
8.2. ZONIFICACIÓN PRINCIPAL	164
8.2.1. Áreas de especial significado ambiental (AESA)	164
8.2.2. Áreas de recuperación ambiental (ARA)	165
8.2.3. Áreas de importancia social (AIS)	165
8.2.4. Áreas de producción económica (APE)	165
8.3. CATEGORÍAS DE ZONIFICACIÓN INTERMEDIA	165
8.3.1. Humedales (Z1).	165
8.3.2. Vegetación de crecimiento secundario (Z2).	166
8.3.3. Rastrojo (Z3).	166
8.3.4. Pasturas (Z4).	166
8.3.5. Cultivos permanentes (Z7).	166
8.3.6. Vías (Z8).	167
8.4. RESULTADOS	167
8.4.1. Zonificación principal.	167
8.4.2. Zonificación ambiental intermedia.	169
8.5. RONDAS HÍDRICAS	171
8.6. AJUSTES EN LA ZONIFICACIÓN	172

9. PLAN DE MANEJO AMBIENTAL	<u>176</u>
9.1. INTRODUCCIÓN	176
9.2. METODOLOGÍA	177
9.3. VISIÓN	178
9.4. MISIÓN	178
9.5. OBJETIVOS	179
9.5.1. Objetivo general del Plan de Manejo.	179
9.5.2. Objetivos específicos.	179
9.6. TIEMPOS DE EJECUCIÓN	179
9.7. ESTRATEGIAS	180
9.7.1. Programa de recuperación de ecosistemas y hábitat.	183
9.7.2. Programa de investigación, educación y concientización.	183
9.7.3. Programa manejo sostenible.	183
9.8. PROGRAMAS Y PROYECTOS	184
PROGRAMA 1. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN.	184
Proyecto 1.1. Ampliación del conocimiento sobre la fauna y flora silvestre.	184
Proyecto 1.2. Programa de educación ambiental y apropiación social partide los humedales.	cipativa 187
Proyecto 1.3. Evaluación ambiental del humedal.	190
PROGRAMA 2. MANEJO SOSTENIBLE.	193
Proyecto 2.1. Control y seguimiento.	193
9.9. EVALUACIÓN DEL PLAN DE MANEJO	196
9.10. PLAN DE TRABAJO ANUAL	196
9.11. COSTOS DEL PLAN DE MANEJO AMBIENTAL	197
ANEXOS	199
BIBLIOGRAFÍA	245

INTRODUCCIÓN

Los humedales son considerados ecosistemas muy sensibles a la intervención de origen antrópico, en Colombia son vitales dentro de la amplia variedad de ecosistemas y, al ofrecer distintos bienes y servicios, constituyen en un reglón importante de la economía nacional, regional y local (Ministerio del Medio Ambiente [MMA], 2002). Los humedales sirven para mitigar los impactos generados por el ciclo hidrológico de una región y, paralelamente, proveen de hábitat a distintos organismos, incluyendo aquellas especies que recurren a la migración como estrategia adaptativa. Proveen de hábitat, alimento, refugio, y áreas de crianza y reproducción a un elevado número de especies de peces, aves, anfibios, reptiles, mamíferos e invertebrados. Son reconocidos por su alto nivel de endemismos, en particular de peces e invertebrados, por su fauna altamente especializada y por ser refugio de una gran diversidad de especies de aves migratorias. Los humedales tienen también un papel ecológico muy importante en el control de la erosión, la sedimentación y las inundaciones; en el abastecimiento y depuración del agua, y en el mantenimiento de pesquerías. En la actualidad estos sistemas han reducido su extensión considerablemente debido al drenado y relleno de sus áreas para diferentes usos (Aquilar, 2003).

Su afectación obedece a distintos factores, generalmente antrópicos. Uno de ellos ha sido la inadecuada planificación y el uso de técnicas nocivas, así como la ejecución de políticas de desarrollo sectorial inconsistentes y desarticuladas (MMA, 2002). Con el fin de detener la pérdida de los humedales se han desarrollado distintas iniciativas, una de ellas es la Convención Relativa a los Humedales de Importancia Internacional, especialmente como hábitat de aves acuáticas, adoptada en RAMSAR en 1971 (Sánchez, 1998). Igualmente, la Agenda 21 plantea como prioridad para los recursos de agua dulce la protección de los ecosistemas y la ordenación integrada de los recursos hídricos (MMA, 2002).

La declinación en la producción de las especies acuáticas en general se ha asociado a la pérdida de diversos tipos de hábitat estuarinos y ribereños, como la vegetación acuática sumergida, vegetación marginal halófita, sustratos someros lodosos, arrecifes ostrícolas y restos de vegetación arbórea. Sin embargo, la declinación en el tamaño de las poblaciones de igual manera es causada por una serie de procesos biológicos, geológicos, físicos y químicos, tales como la alteración física de los hábitats, la modificación de los influjos de agua dulce y la contaminación crónica o accidental (Barba, 2004). Los humedales poseen atributos o valores intrínsecos que los distinguen de otros ecosistemas y es ahí donde reside su gran importancia en el sistema vital del planeta y el hecho de detentar la máxima consideración desde el punto de vista de la conservación (Viñals, 2004).

Actividades como la agricultura intensiva, la urbanización, la contaminación, la desecación, sobreexplotación de recursos y la introducción de especies foráneas, han afectado los procesos naturales que se dan en los humedales convirtiéndolos en ecosistemas frágiles con pérdida de capacidad productiva.

Debido a la alteración de estos ecosistemas el Estado propone su protección mediante la Ley 99 de 1993, en su artículo 5 numeral 24, donde establece la responsabilidad del Ministerio del Medio Ambiente en relación con los humedales, y menciona que: "le corresponde regular las condiciones de conservación y manejo de ciénagas, pantanos, lagos, lagunas y demás ecosistemas hídricos continentales". El MMA adopta esta responsabilidad por medio de la Resolución 157 del 12 de febrero de 2004, y en su artículo 4, dispone en relación con el Plan de Manejo Ambiental, que las Autoridades Ambientales competentes deberán elaborarlos y ejecutarlos para los humedales prioritarios de su jurisdicción, los cuales deberán partir de una delimitación, caracterización y zonificación para la definición de medidas de manejo, con la participación de los distintos interesados. Así mismo, el Plan de Manejo Ambiental deberá garantizar el uso sostenible y el mantenimiento de su diversidad y productividad biológica (Resolución 196 Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 01 de febrero de 2006).

En el departamento del Tolima se tiene identificados más de 655 cuerpos de agua, dentro de los cuales se destaca 300 lagunas de cordillera, de origen glaciar, localizadas en la cordillera Central en áreas de los Parques Nacionales Naturales (Los nevados, Las hermosas y Nevado del Huila), así mismo se han identificado numerosas lagunas y sistemas de los humedales en las zonas bajas principalmente en la zona de vida Bosque Seco Tropical del departamento. A pesar de esta variedad de ecosistemas acuáticos, en el departamento del Tolima solo se han realizado algunos estudios relacionados con la caracterización de flora y fauna en humedales ubicados principalmente en el Valle del Magdalena.

Teniendo en cuenta lo anterior y consciente de la importancia de los humedales, y la fauna y flora que los caracteriza, la Corporación Autónoma del Tolima CORTOLIMA, en Convenios Interadministrativos con la Universidad del Tolima-Grupo de Investigación en Zoología (GIZ), han formulado 35 Planes de Manejo Ambiental (PMA), más tres PMA desarrollados con CORPOICA. Con los resultados obtenidos de estos trabajos se ha llegado a considerar relevante actualizar 21 PMA, ubicados en las zonas bajas y altas del departamento del Tolima. Por esta razón, el objetivo del presente Plan de Manejo Ambiental es la "Revisión, ajuste y caracterización del humedal La Moya de Enrique, ubicado en la vereda Chorrillo del municipio de Ambalema, principalmente en aspectos bióticos (flora y fauna) y topo-batimétricos, como también la actualización de la línea base de acciones concretas y directas para su recuperación y protección.

MARCO TEÓRICO

LOS HUMEDALES

Existen más de cincuenta definiciones de humedales (Dugan, 1992) y los expertos debaten la conveniencia de acuñar una de uso general (Scott y Jones, 1995). El Ministerio del Medio Ambiente ha adoptado la definición de la Convención RAMSAR, la cual establece: «... son humedales aquellas extensiones de marismas, pantanos, turberas o aguas de régimen natural o artificial, permanentes o temporales, estancadas o corrientes, dulces, salobres o saladas, incluyendo las extensiones de agua marina cuya profundidad en marea baja no exceda de seis metros» (Scott y Carbonell, 1986).

Cowardin et al. (1979) sugirieron que los humedales fueran reconocidos por su carácter de interfaz entre los sistemas terrestres y acuáticos. Por otro lado, Farinha et al. (1996) ofrecieron criterios operativos, como los siguientes: El límite entre tierra con cobertura vegetal predominantemente hidrofítica y aquella con cobertura mesofítica o xerofítica; el límite entre suelo predominantemente hídrico y aquel predominantemente seco; en aquellos sitios en donde no hay ni suelo ni vegetación, el límite entre la tierra que es inundada o saturada con agua en algún momento del año y aquella que no lo es.

Las funciones ecológicas y ambientales de los humedales colombianos representan numerosos beneficios para la sociedad. En primer término, son sistemas naturales de soporte vital, y base de actividades productivas y socioculturales, tales como economías extractivas basadas en el uso de muchas especies, a través de la pesca artesanal y de sustento, caza y recolección y el pastoreo y la agricultura en épocas de estiaje (MMA-Instituto Alexander Von Humboldt, 1999). Sin embargo, los humedales no han merecido atención prioritaria, siendo entonces ignorada su contribución a la economía del país.

Por su naturaleza, los humedales son ecosistemas altamente dinámicos, sujetos a una amplia gama de factores naturales que determinan su modificación en el tiempo aún en ausencia de factores de perturbación. Sus atributos físicos, principalmente hidrográficos, topográficos y edáficos son constantemente moldeados por procesos endógenos tales como la sedimentación y la desecación y por fenómenos de naturaleza principalmente exógena, tales como avalanchas, el deslizamiento de tierras, las tormentas y vendavales, la actividad volcánica y las inundaciones tanto estacionales como ocasionales.

Se puede decir que un humedal degradado es un humedal que ha perdido algunos de sus valores o funciones o todos ellos a causa de la desecación, por tanto, existen razones que fundamentan iniciar actividades de restauración y rehabilitación de los humedales degradados. En esencia, se trata de las mismas

razones para conservar los humedales naturales: las valiosas funciones y servicios que prestan. Vale la pena establecer una definición para los términos valores y funciones de los humedales. Las funciones son procesos químicos, físicos y biológicos o atributos del humedal que son vitales a la integridad del sistema y que operan sean o no considerados importantes para la sociedad. Los valores son propiedades del humedal que no son necesariamente importantes a la integridad del sistema pero que son percibidos como de importancia para la sociedad. La importancia social de las funciones y valores de un humedal se define como el valor que la sociedad le asigna a una función o valor evidenciado por su valor económico o reconocimiento oficial (Adamus et al., 1991).

Pese a que es muy difícil restaurar humedales exactamente como eran antes de su conversión y que incluso puede ser imposible, existen muchos ejemplos de proyectos de restauración que han restablecido al menos algunas de estas funciones y valores. Debido a la dificultad que conlleva un proceso de restauración, es indispensable determinar el criterio de éxito de la misma desde un comienzo y en forma detallada. Otra limitante es la ausencia de información sobre el estado de los humedales antes de ser impactados.

RESTAURACIÓN ECOLÓGICA Y REHABILITACIÓN AMBIENTAL

Las perturbaciones naturales son un elemento integral de los ecosistemas de todo tipo. Estas perturbaciones afectan la composición y estructura de los ecosistemas, generando cambios permanentes y una dinámica propia. La velocidad de recuperación de los ecosistemas depende de varios factores, pero principalmente de la magnitud y frecuencia. Muchos modelos extractivos y productivos de pequeña escala generan impactos comparables con las perturbaciones naturales, de los cuales se recuperan fácilmente, la capacidad de un ecosistema para recuperarse de estos cambios se conoce bajo el término de resiliencia: entre mayor resiliencia mayor capacidad de recuperación a las perturbaciones (Samper, 1999).

Con la perturbación de un ecosistema se produce un cambio en la estructura, usualmente representada en una reducción en el número de especies y complejidad del ecosistema. Al mismo tiempo se puede producir un impacto sobre la función, por ejemplo, la reducción en la capacidad de reciclaje de nutrientes. En sentido estricto, la restauración de un ecosistema implica el retorno a la estructura y función original. El problema conceptual es como definir el ecosistema original, sobre todo si tenemos en cuenta que todos los ecosistemas cambian con el tiempo.

En el estudio de los ecosistemas se tiene en cuenta su composición de especies, su estructura y su funcionamiento (procesos), porque en últimas la restauración

ecológica es un tipo de manejo de ecosistemas que apunta a recuperar la biodiversidad, su integridad y salud ecológica. La biodiversidad es su composición de especies (principalmente de los productores primarios, las plantas), la integridad ecológica es su estructura, función y la salud ecológica es su capacidad de recuperación después de un disturbio (resistencia a disturbios y resiliencia), lo cual garantiza su sostenibilidad.

En consecuencia la capacidad de restaurar un ecosistema dependerá de una gran cantidad de conocimientos, como por ejemplo: el estado del ecosistema antes y después del disturbio, el grado de alteración de la hidrología, la geomorfología y los suelos, las causas por las cuales se generó el daño; la estructura, composición y funcionamiento del ecosistema preexistente, la información acerca de las condiciones ambientales regionales, la interrelación de factores de carácter ecológico cultural e histórico: es decir la relación histórica y actual entre el sistema natural y el sistema socioeconómico, la disponibilidad de la biota nativa necesaria para la restauración, los patrones de regeneración, o estados sucesionales de las especies (por ejemplo, estrategias reproductivas, mecanismos de dispersión, tasas de crecimiento y otros rasgos de historia de vida o atributos vitales de las especies), las barreras que detienen la sucesión y el papel de la fauna en los procesos de regeneración (Vargas, 2007).

El éxito en la restauración también dependerá de los costos, de las fuentes de financiamiento y voluntad política de las instituciones interesadas en la restauración; pero ante todo de la colaboración y participación de las comunidades locales en los proyectos.

• Restauración ecológica. La Sociedad Internacional para la Restauración Ecológica (SERI por sus siglas en inglés) define la restauración ecológica como "el proceso de asistir la recuperación de un ecosistema que ha sido degradado, dañado, o destruido" (SERI, 2004). En otras palabras, la restauración ecológica es el esfuerzo práctico por recuperar de forma asistida las dinámicas naturales tendientes a restablecer algunas trayectorias posibles de los ecosistemas históricos o nativos de una región.

Se entiende que las dinámicas naturales deben estar dirigidas a la recuperación, no de la totalidad sino de los componentes básicos de la estructura, función y composición de especies, de acuerdo a las condiciones actuales en que se encuentra el ecosistema que se va a restaurar (SERI, 2004).

La visión ecosistémica implica que lo que debe retornar a un estado pre-disturbio son las condiciones ecológicas que garantizan la recuperación de la composición estructura y función del ecosistema y que recuperan servicios ambientales. Desde este punto de vista la restauración es un proceso integral de visión ecosistémica tanto local, como regional y del paisaje, que tiene en cuenta

las necesidades humanas y la sostenibilidad de los ecosistemas naturales, seminaturales y antrópicos (Vargas, 2007).

El valor de usar la palabra restauración desde el punto de vista ecosistémico es que nos ayuda a pensar en todos los procesos fundamentales de funcionamiento de un ecosistema, especialmente en los procesos ligados a las sucesiones naturales (Cairns, 1987), sus interacciones y las consecuencias de las actividades humanas sobre estos procesos.

- Rehabilitación. Varios autores utilizan la palabra rehabilitación como sinónimo de restauración. Pero en realidad su uso presenta diferencias. La rehabilitación no implica llegar a un estado original. Por esta razón la rehabilitación se puede usar para indicar cualquier acto de mejoramiento desde un estado degradado (Bradshaw, 2002), sin tener como objetivo final producir el ecosistema original. Es posible que podamos recuperar la función ecosistémica, sin recuperar completamente su estructura, en este caso se realiza una rehabilitación de la función ecosistémica, muchas veces incluso con un reemplazo de las especies que lo componen (Samper, 2000). En muchos casos la plantación de árboles nativos o de especies pioneras dominantes y de importancia ecológica puede iniciar una rehabilitación.
- **Revegetalización.** Es un término utilizado para describir el proceso por el cual las plantas colonizan un área de la cual ha sido removida su cobertura vegetal original por efecto de un disturbio. La revegetalización no necesariamente implica que la vegetación original se restablezca, solamente que algún tipo de vegetación ahora ocupa el sitio. Por ejemplo, muchas áreas que sufren disturbios son ocupadas por especies invasoras que desvían las sucesiones a coberturas vegetales diferentes a las originales (Vargas, 2007).

ESTRATEGIAS PARA LA RESTAURACIÓN ECOLÓGICA DE LOS HUMEDALES

La restauración es un componente de la planificación nacional para la conservación y uso racional de los humedales. De acuerdo con la 8ª reunión de la Conferencia de las partes implicadas en la convención sobre humedales RAMSAR (2002) se establecen principios y lineamientos para la restauración de los humedales en el documento RAMSAR COP8 Resolución VIII. 16.

A continuación se enuncian algunos principios de consideración en los proyectos de restauración de los humedales:

1. Comprensión y declaración clara de metas, objetivos y criterios de rendimiento.

- 2. Planificación detenida para reducir las posibilidades de efectos secundarios indeseados.
- 3. Examen de procesos naturales y condiciones reinantes durante la selección, preparación y elaboración de proyectos.
- 4. No debilitar los esfuerzos para conservar los sistemas naturales existentes.
- 5. Planificación a escala mínima de cuenca de captación, sin desestimar el valor de hábitats de tierras altas y los nexos entre estos y hábitats propios de los humedales.
- 6. Tomar en cuenta los principios que rigen la asignación de recursos hídricos y el papel que la restauración puede desempeñar en el mantenimiento de las funciones ecológicas de los humedales.
- 7. Involucrar a todos los interesados directos en un proceso abierto abierto de discusión e implementación de acciones sobre los humedales.
- 8. Gestión y monitoreo continuos (custodia a largo plazo).

Lograr la restauración o rehabilitación de un humedal requiere en primer lugar del restablecimiento del régimen hidrológico, lo cual depende de actividades que consisten principalmente en eliminar obras de infraestructura que impidan el flujo de agua al humedal, o tubos y canales que drenan el agua de este. Sin embargo, la regulación hídrica del humedal también se relaciona con actividades que conciernen al control de la entrada de sedimentos, residuos sólidos y flujos contaminantes y la reconfiguración geomorfológica del sitio.

El régimen hidrológico puede recuperarse de manera indirecta si se controla la calidad del agua a partir de las concentraciones de nutrientes, la explotación de acuíferos y manantiales abastecedores, si se mantiene la cobertura vegetal en las partes altas de las cuencas. Dado que el aporte de sedimentos está relacionado con el régimen hidrológico, en ocasiones es necesario construir gaviones o estructuras de retención de suelo. En otros casos, se deben quitar las presas que retienen el sedimento o construir playas y dunas protectoras (Vargas, 2010).

Otro de los factores relacionados con el ambiente físico es la restitución de la microtopografía del sustrato porque determina la variación de factores como el potencial de oxidorreducción y temperatura, y/o la distribución y establecimiento de las especies. Las especies vegetales de los humedales son susceptibles a variaciones pequeñas en el relieve del sustrato en escalas de centímetros a metros (Collins et al., 1982; Titus, 1990). La reconformación física del humedal involucra técnicas de empleo de maquinaria y manuales para estabilizar la geoforma y al mismo tiempo propiciar la heterogeneidad en el relieve.

En segundo lugar, es necesario el control de especies invasoras acuáticas, semiacuáticas y terrestres. Esto puede realizarse a través de métodos como el entresacado manual o la remoción con maquinaria liviana. Es conveniente hacerlo antes del establecimiento de especies vegetales nativas ya que es otra

de las barreras a la restauración. El establecimiento de especies vegetales en los humedales tiene dos alternativas metodológicas (Lindig-Cisneros y Zedler, 2005):

- A. Métodos de diseño. Esta aproximación toma en cuenta la estrategia de historia de vida de las especies como el factor más importante en el desarrollo de la vegetación en un sitio. Además, enfatiza aproximaciones intervencionistas basadas en resultados predecibles ya que involucra la selección e introducción de especies con implementación de medidas necesarias para su permanencia.
- B. Métodos de autodiseño. Consisten en permitir que las comunidades vegetales se organicen espontáneamente dejando que las especies se establezcan de manera natural colonizando el sitio. El restaurador puede plantar especies vegetales o no pero las condiciones ambientales naturales determinarán la permanencia de la vegetación (Middleton, 1999).

Al igual que los métodos de diseño la creación de hábitats para la fauna requiere de la selección de especies vegetales de acuerdo a las especies animales. Restablecer la vegetación de los alrededores del humedal involucra sembrar especies nativas que sirvan como barrera, perchas vivas y refugios. Al final del proceso es imprescindible restablecer también la vegetación de los alrededores. Algunos criterios para el manejo de la cobertura vegetal terrestre de un humedal son: diseño de las plantaciones, diversidad de especies, conectividad interna, atrayentes (perchas y árboles de fructificación), condiciones edáficas, alternancia de corredores, estratificación, protección de la franja litoral, zonas de recreación y vegetación de transición.

Dentro de los atributos o variables de medición recomendables en el monitoreo de la restauración de los humedales se reconocen los siguientes (Callaway et al., 2001).

- Hidrología. Régimen de inundación, nivel freático, tiempo de retención de agua, caudales de entradas y salidas, tasas de flujo, elevación, sedimentación y erosión.
- Calidad del agua. Temperatura del agua y oxígeno disuelto, pH, turbidez y estratificación de la columna de agua y nutrientes.
- Suelos. Contenido de agua, textura, salinidad, densidad aparente, pH, potencial de reducción, contenido de materia orgánica, nitrógeno total, nitrógeno inorgánico, procesos del nitrógeno, descomposición, sustancias tóxicas.

- Vegetación acuática. Porcentaje de cobertura, composición de especies, etapas de sucesión.
- Vegetación terrestre. Mapeo, cobertura y altura de plantas vasculares, arquitectura del dosel, tamaño de parches y distribución de especies particulares, biomasa epigea, biomasa hipogea, estimación visual de algas y tipo dominante, concentración de nitrógeno en tejidos.
- Fauna. Tasa de colonización, composición de especies, densidad, estructura poblacional, crecimiento, períodos de migración, anidación y cuidado de crías, relación reptiles/mamíferos. Entre los grupos considerados como indicadores biológicos para realizar el seguimiento de estos parámetros se encuentran los macroinvertebrados acuáticos, peces y aves acuáticas.

NORMATIVIDAD

Desde finales de la década de los 80 y principios de los 90 se empezaron a gestionar en Colombia los primeros pasos para la conservación de los humedales del país. En este sentido, en 1991, durante la Segunda Reunión de los Miembros Sudamericanos de la Unión Mundial para la Conservación de la Naturaleza (IUCN), el Programa Mundial de Humedales de la IUCN convocó un taller en donde se recomendó la realización de otros talleres de Humedales en cuatro países de la región para la elaboración de la Estrategia Nacional de Conservación de los Humedales.

Posteriormente, en 1992 se llevó a cabo en Bogotá, el Primer Taller Nacional de Humedales, en el cual se construyó de manera informal un Comité ad hoc con el fin de canalizar acciones tendientes a la conservación de estos ecosistemas (Naranjo, 1997).

Con la creación del Ministerio del Medio Ambiente mediante la Ley 99 de 1993, se reorganizó el sistema nacional encargado de la gestión ambiental y en la estructura interna del Ministerio se creó una dependencia específica para el tema de los humedales. En 1996, esta dependencia generó un documento preliminar de lineamientos de Política para varios ecosistemas, incluyendo los humedales. Un año más tarde, el MMA realizó una consultoría con el Instituto de Investigaciones Biológicas Alexander von Humboldt con el fin de proporcionar las bases técnicas para la formulación de una política nacional de estos ecosistemas acuáticos. Los resultados de dicha consultoría hacen parte de la publicación "Humedales Interiores de Colombia, Bases Técnicas para su conservación y Desarrollo Sostenible". En este mismo sentido, el Ministerio realizó en 1999 un estudio que identificó las prioridades de gestión ambiental de varios ecosistemas, entre ellos los humedales.

Por otra parte, en el plano internacional, el Ministerio del Medio Ambiente realizó desde su creación las gestiones políticas y técnicas para que el Congreso de la República y la Corte Constitucional aprobaron la adhesión del país a la Convención RAMSAR. Lo anterior se logró mediante la Ley 357 del 21 de enero de 1997, produciéndose la adhesión protocolaria el 18 de junio de 1998.

La Convención RAMSAR (2000), plantea que la perturbación de los humedales debe cesar, que la diversidad de los que permanecen debe conservarse, y, cuando sea posible, se debe procurar rehabilitar o restaurar aquellos que presenten condiciones aptas para este tipo de acciones.

Por medio de la Resolución 196 de 2006 se adopta la Guía Técnica para la Formulación, Complementación o Actualización, por parte de las autoridades ambientales competentes en su área de jurisdicción de los Planes de Manejo para los Humedales Prioritarios en Colombia y para la delimitación de los mismos. Así mismo, la conservación de estos ecosistemas es prioritaria para cumplir con los objetivos contemplados en otros tratados internacionales de los cuales Colombia es parte, como por ejemplo, el Convenio sobre la Diversidad Biológica.

En el párrafo 1 del artículo 3 de la Convención RAMSAR se estipula que "Las Partes Implicadas deberán elaborar y aplicar su planificación de forma que favorezca la conservación de los humedales incluidos en la Lista de Humedales de Importancia Internacional, y en la medida de lo posible, el uso racional de los humedales de su territorio."

Con este propósito, en la 7a COP (Conferencia de las Partes) celebrada en Costa Rica en 1999, se aprobaron los Lineamientos para Elaborar y Aplicar Políticas Nacionales de Humedales, en los cuales se mencionan los siguientes elementos para lograr su conservación:

- A. Fijación de objetivos de conservación de los humedales en las políticas gubernamentales.
- B. Fortalecimiento de la coordinación y la comunicación entre los organismos gubernamentales.
- C. Creación de más incentivos a la conservación de los humedales.
- D. Fomento de un mejor manejo de los humedales después de su adquisición o retención.
- E. Conocimientos más elaborados y su aplicación.
- F. Educación dirigida al público en general, a los decisores, los propietarios de tierras y al sector privado.
- G. Fomento de la participación de las organizaciones no gubernamentales y las comunidades locales.

Colombia cuenta con herramientas adecuadas para la protección y conservación de los humedales y es así como a partir de su Constitución Política de 1991 se "eleva el medio ambiente a la calidad de derecho constitucional colectivo, estableciendo derechos y deberes de la sociedad en relación con el

manejo y protección de los recursos naturales, instando como elemento constitucional el desarrollo sostenible y asignando funciones de protección ambiental a diferentes autoridades del poder público".

Norma	Año	Nombre	Institución	Descripción
Convención	1971	RAMSAR	Convención de RAMSAR	Convención Relativa a los Humedales de Importancia Internacional especialmente como Hábitat de Aves Acuáticas.
Decreto Ley	1974	Código de los Recursos Naturales Renovables y Protección del Medio Ambiente	Ministerio de Ambiente y Desarrollo Sostenible	El Art. 137 señala que serán objeto de protección y control especial las fuentes, cascadas, lagos y otras corrientes de agua naturales o artificiales, que se encuentren en áreas declaradas dignas de protección.
Decreto	1978	Dec. 1541	Ministerio de Agricultura	Por el cual se reglamenta la parte III del libro II del Decreto Ley 2811 de 1974; «De las aguas no marítimas» y parcialmente la Ley 23 de 1973. Normas relacionadas con el recurso agua. Dominio, ocupación, restricciones, limitaciones, condiciones de obras hidráulicas, conservación y cargas pecuniarias de aguas, cauces y riberas.
Decreto	1984	Dec. 1594	Ministerio de Agricultura	Por el cual se reglamenta parcialmente el Título 1 de la Ley 09 de 1979, así como el Capítulo II del Título VI-Parte III-Libro II y el Título III de la parte III-Libro I-del Decreto 2811 de 1974 en cuanto a Usos del Agua y Residuos Líquidos. Los usos de agua en los humedales, dados sus parámetros físico-químicos son: Preservación de Flora y

Norma	Año	Nombre	Institución	Descripción
				Fauna, agrícola, pecuario
Constitución	1991	Constitución política de 1991	Gobierno de Colombia	y recreativo. Artículo 80. El Estado planificará el manejo y aprovechamiento de los recursos naturales, para garantizar su desarrollo sostenible, su conservación, restauración o sustitución.
Ley	1993	Ley 99	Ministerio de Ambiente y Desarrollo Sostenible	Art. 5 numeral 24 establece la responsabilidad del Ministerio del Medio Ambiente en la regulación de los recursos hídricos y de los ecosistemas con ellos relacionados. Ordenándosele "regular las condiciones de conservación y manejo de ciénagas, pantanos, lagos, lagunas y demás ecosistemas hídricos continentales".
Ley	1994	Ley 165	Congreso de Colombia	Por medio de la cual se aprueba el "Convenio sobre la Diversidad Biológica", hecho en Río de Janeiro el 5 de junio de 1992. Esta ley responsabiliza al estado de la conservación de su diversidad biológica y de la utilización sostenible de sus recursos biológicos. Teniendo en cuenta que los humedales son reguladores de los regímenes hidrológicos y hábitat de una fauna y flora característica, especialmente de aves acuáticas, algunas migratorias, hace de estos un hábitat relevante con importancia por su alta riqueza, diversidad biológica y servicios ecosistémicos para las comunidades locales.

Norma	Año	Nombre	Institución	Descripción
Lineamiento	1995	Política para el Manejo Integral del Agua	Ministerio de Ambiente y Desarrollo Sostenible	El Ministerio de Ambiente elaboró el documento "Lineamientos para la construcción colectiva de una cultura del agua". Uno de sus objetivos es proteger acuíferos, humedales y otros reservorios importantes de agua.
Ley	1997	Ley 357	Congreso de Colombia	Por medio de la cual se aprueba la "Convención Relativa a los Humedales de Importancia Internacional Especialmente como Hábitat de Aves Acuáticas", suscrita en Ramsar el dos (2) de febrero de mil novecientos setenta y uno (1971). Esta Ley es la única norma que de manera específica y concreta impone obligaciones al Estado colombiano para la conservación y protección de los humedales, considerados en su acepción genérica.
Ley	1997	Ley 614		Por medio de la cual se adiciona la Ley 388 de 1997 y se crean los comités de integración territorial para la adopción de los planes de ordenamiento territorial. Los municipios y los distritos son los responsables de la elaboración de los planes y esquemas de ordenamiento territorial. Dichos planes deben, entre otras cosas, localizar las áreas con fines de conservación y recuperación paisajística e identificar los ecosistemas de importancia ambiental. También les corresponde

Norma	Año	Nombre	Institución	Descripción
Homia	7,110	Nombre	mamocion	clasificar los suelos en urbanos, rurales o de expansión. Dentro de cualquiera de estas tres clases puede existir lo que se define como suelo de protección.
Resolución	2002	Res. VIII. 14 RAMSAR	Convención de RAMSAR	Por medio de la cual se establecen los nuevos lineamientos para la planificación del manejo de los sitios RAMSAR y otros humedales.
Resolución	2008	X. 31 RAMSAR	Convención de RAMSAR	Por medio de la cual se establecen lineamientos para mejorar la Biodiversidad en los arrozales como sistemas de Humedales
Resolución	2004	Res. 157	Ministerio de Ambiente y Desarrollo Sostenible	Por la cual se reglamenta el uso sostenible, conservación y manejo de los humedales, y se desarrollan aspectos referidos a los mismos en aplicación de la convención RAMSAR.
Resolución	2006	Res. 196	Ministerio de Ambiente y Desarrollo Sostenible	Por la cual se adopta la guía técnica para la formulación de planes de manejo para humedales en Colombia.
Resolución	2006	Res. 1128	Ministerio de Ambiente y Desarrollo Sostenible	Por el cual se modifica el artículo 12 de la resolución 157 de 2004 y se dictan otras disposiciones. Artículo 12. Aprobación del Plan de Manejo. El Plan de Manejo del Humedal elaborado con base en la guía técnica a que se refiere la presente Resolución, será aprobado por el Consejo o Junta Directiva de la respectiva autoridad ambiental competente.
Resolución	XXX	Res. 377	CORTOLIMA	ambiorital compotente.
	•• •			

Fuente: GIZ (2022)

OBJETIVOS

OBJETIVO GENERAL

Realizar el ajuste al Plan de Manejo Ambiental del humedal La Moya de Enrique del municipio de Ambalema en el departamento del Tolima.

OBJETIVOS ESPECÍFICOS

- Caracterizar la flora y fauna (lepidópteros diurnos, aves, herpetos, peces y mamíferos) del humedal.
- Identificar las especies de flora y fauna que se encuentren en alguna categoría de amenaza en el humedal.
- Realizar el estudio batimétrico y análisis del comportamiento de la lámina de agua del humedal objeto de estudio.
- Establecer los valores de uso en términos de servicios de los ecosistemas percibidos por los pobladores colindantes a las áreas del humedal.
- Precisar y ajustar las propuestas planteadas en el plan de manejo para la rehabilitación, conservación, protección y uso sostenible del humedal.

CAPÍTULO 1. LOCALIZACIÓN Y CLASIFICACIÓN

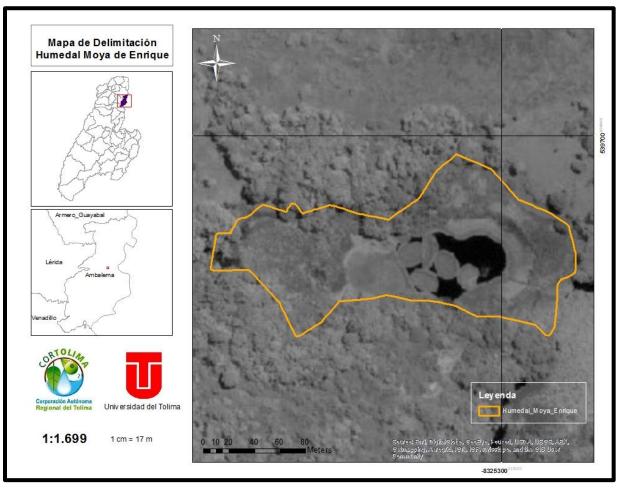
1. LOCALIZACIÓN Y CLASIFICACIÓN

1.1. UBICACIÓN GEOGRÁFICA

El humedal La Moya de Enrique se encuentra ubicado en la Finca Montealegre, Vereda Chorrillo del municipio de Ambalema, comprendiendo un área aproximada de 3.28 hectáreas en una altura promedio de 253 metros (Figura 1-1, Tabla 1-1). El área corresponde a las microcuencas conformadas por corrientes permanentes que básicamente se alimentan del distrito de riego.

Tabla 1-1. Extensión geográfica del humedal La Moya de Enrique, Ambalema-Tolima.

Extremo Norte		Oeste
Norte	04°50'22.22''	74°47'28.77''
Sur	04°50'29.24''	74°47'12.97''
Oriente	04°50'21.27''	74°47'1.54''
Occidente	04°50'9.87''	74°47'4.44''


Fuente: GIZ (2022)

Al humedal se llega desde el norte del casco urbano del municipio de Ambalema, por la vía que conduce al municipio de Armero-Guayabal, pasando por las veredas de Playa Verde y Gamba San Martin, hasta la vereda Chorrillo en una distancia aproximada de 6.4 kilómetros por vía pavimentada y alrededor de 1.7 kilómetros por vía destapada (Figura 1-1).

La laguna limita al norte con terrenos de propiedad privada y la vía al centro poblado de El Chorrillo; al oriente con pequeños humedales, entre ellos la laguna Matecachaco; al sur con las lagunas El Dique y Venecia y al occidente con los canales de riego, los cuales son sus principales tributarios.

El área aledaña y de influencia del humedal se encuentra altamente afectada por la presencia y desarrollo de sistemas productivos con énfasis en actividades agrícolas (cultivos de arroz y maíz) y ganaderas extensivas; estás prácticas productivas pueden tener efectos futuros sobre el ecosistema principalmente en los componentes suelo y las geoformas debido al pisoteo constante del ganado, lo que puede conducir a la compactación de los suelos y al posterior arrastre de material hasta el cuerpo de agua, lo que afectaría potencialmente la calidad del recurso hídrico (Figura 1-2).

Figura 1-1. Localización de la microcuenca del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

Figura 1-2. Humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

1.2. CLASIFICACIÓN Y CATEGORIZACIÓN DEL HUMEDAL

Con base en la Convención RAMSAR, el humedal La Moya de Enrique se clasifica según sus cinco niveles jerárquicos, basados en la Política Nacional para Humedales interiores de Colombia (MMA, 2002) (Tabla 1-2):

Tabla 1-2. Clasificación del humedal La Moya de Enrique, Ambalema-Tolima según la Convención Ramsar

Sistema jerárquico (niveles)	Clasificación Humedal La Moya de Enrique
Ámbito: Es la naturaleza ecosistémica más amplia en su origen y funcionamiento.	Interior
Sistema: Los humedales naturales se subdividen según la influencia de factores hidrológicos, geomorfológicos, químicos o biológicos. Los artificiales se separan con base en el proceso que los origina o mantiene.	Palustre
Subsistema: Los humedales naturales se subdividen dependiendo del patrón de circulación del agua.	Permanente
Clase: Se define con base en descriptores de la fisionomía del humedal, como formas de desarrollo dominantes o características del sustrato, tales como textura y granulometría en caso de no estar cubierto por plantas.	Emergente
Subclase: Depende principalmente de aspectos biofísicos particulares de algunos sistemas o de la estructura y composición de las comunidades bióticas presentes.	Pantanos y ciénagas dulces permanentes

Fuente: GIZ (2022)

CAPÍTULO 2. COMPONENTE FÍSICO

2. COMPONENTE FÍSICO

La caracterización física del humedal La Moya de Enrique, fue construida a partir de información secundaria disponible, analizando diversos aspectos tales como la forma de la superficie terrestre, distribución y composición litológica, comportamiento climático, hidrografía existente e hidrología, descritos a continuación:

2.1. GEOMORFOLOGÍA Y SUELOS

La zona circundante al complejo de humedales en el municipio de Ambalema, presenta afloramientos de roca dispersos principalmente al oriente y nor-oriente. La zona está rodeada de colinas con pendientes relativamente suaves y que conforman una depresión bien marcad donde se aloja el volumen de agua correspondiente al humedal.

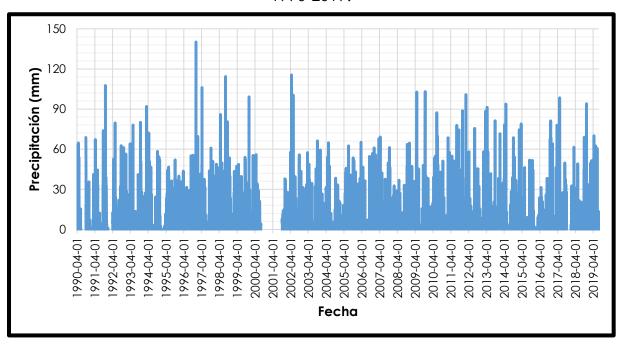
El paisaje de piedemonte cubre un área de 7.11 hectáreas equivalentes al 16% de la cuenca definida para el humedal presenta un relieve tipo abanico-terraza subactual con material parental de aluviones heterométricos y relieve plano a ligeramente inclinado localizados al sur-occidente, sur y sur-oriente del cuerpo de agua. Los suelos son superficiales a moderadamente profundos, con drenaje bueno a pobre, ligeramente ácidos y de fertilidad moderada. El paisaje de lomerío cubre un área de 27.58 hectáreas equivalentes al 61% de la cuenca definida para el humedal. El tipo de relieve es lomas y colinas, provenientes de areniscas tobáceas y arcillolitas, el cual se caracteriza por ser fuertemente ondulado y escarpado con pendientes cortas y se localiza al norte del cuerpo de agua; tal como se registra en los Humedales Ambalemita y El Burro.

Otras unidades de suelos encontradas en las zonas aledañas a los humedales y de las diferentes microcuencas conformadas por los tributarios corresponden a paisajes de piedemonte en relieves tipo abanicos y abanico-terraza. La zona correspondiente al relieve tipo abanicos cubre un área de 614.19 hectáreas equivalentes al 89% de la cuenca definida para el humedal con material parental de flujos de lodo volcánicos y aluviones heterométricos. Este tipo de relieve se caracteriza por ser plano, ligeramente inclinado y con ondulaciones moderadas, así como la presencia de pedregosidad superficial y erosión ligera a moderada. Los suelos son en esencia superficiales, limitados por la presencia de piedras, de fertilidad moderada, ligeramente ácidos y drenaje bueno, en el caso de La Moya de Enrique.

En los Humedales La Moya de Enrique, La Pedregosa y El Oval, se presenta inclusiones de roca en la zona este de humedal, los cuales afloran

progresivamente al nor-este y norte, donde se encuentran grandes bloques, algunos de ellos con fracturamiento debido a la acción mecánica de las raíces de algunos árboles. Estos bloques alcanzan diámetros superiores a un metro. En esta zona se presenta dos tipos de relieve, el primero correspondiente a un relieve tipo Abanicos y un segundo de tipo abanico-terraza subactual.

El paisaje de abanicos, cubre una superficie de 37.62 hectáreas, equivalentes al 87% de la microcuenca del humedal encontrándose al norte, sur y una amplia franja que se extiende por el occidente, este relieve es derivado de flujos de lodo volcánico y aluviones de diferentes tamaños; se caracteriza por ser plano a ligeramente inclinado, con frecuente pedregosidad superficial y erosión ligera a moderada. Los suelos son superficiales, limitados por la presencia de piedras, de texturas gravillosas, ligeramente ácidos y de fertilidad moderada.

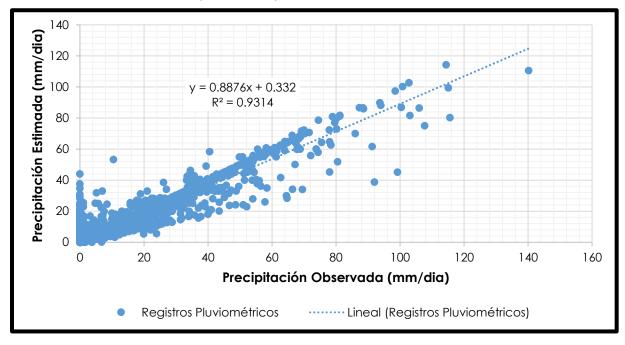

El paisaje abanico-terraza subactual tiene una extensión de 2.06 hectáreas, las cuales se localizan al oriente del espejo de agua, este paisaje es derivado de aluviones heterométricos y es relativamente plano y ligeramente inclinado. Los suelos de este paisaje son superficiales y en algunos casos moderadamente profundos, con un drenaje bueno a pobre y ligeramente ácidos, con fertilidad moderada.

2.2. CLIMA

Para el análisis del comportamiento climático del humedal La Moya de Enrique, se consideraron los registros disponibles de la red de monitoreo meteorológica del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Para ello, se seleccionó la estación de monitoreo más cercana al humedal la cual cumpliera con los criterios de completitud (menos del 10% de los datos faltantes), extensión de los registros (más de 20 años de información) y variables medidas (precipitación y temperatura).

2.2.1. Precipitación. Considerando los criterios anteriormente expuestos para el análisis de la precipitación, la estación meteorológica El Salto (código 21255080) cumple con los criterios de proximidad y selección al disponer de registros continuos suficientes en completitud y extensión a escala diaria.

Aun así, se observa falta de información en períodos recientes (2020-2021) y la presencia de datos faltantes superiores al 10% a partir del año 2017, dificultando representar adecuadamente la variabilidad pluviométrica para los últimos diez años (Figura 2-1).


Figura 2-1. Precipitación diaria para la estación El Salto (21255080), período 1990-2019.

Fuente: GIZ (2022)

Por lo anterior, se toma a consideración los registros de lluvia generados en la Evaluación Regional del Agua (ERA) para el departamento del Tolima (CORTOLIMA, 2021), en el cual se estiman campos de precipitación a escala diaria como resultado del reprocesamiento de la información pluviométrica de estaciones meteorológicas del IDEAM y la implementación de algoritmos de aprendizaje automático para su reproducción espaciotemporal.

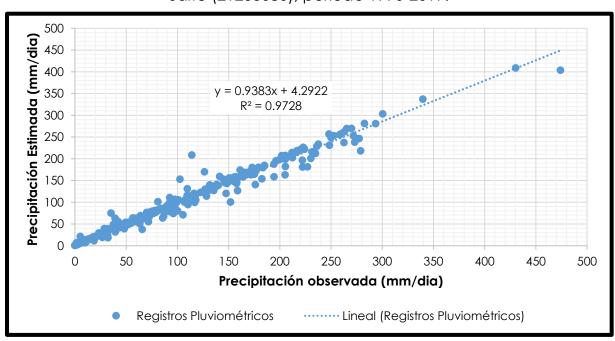
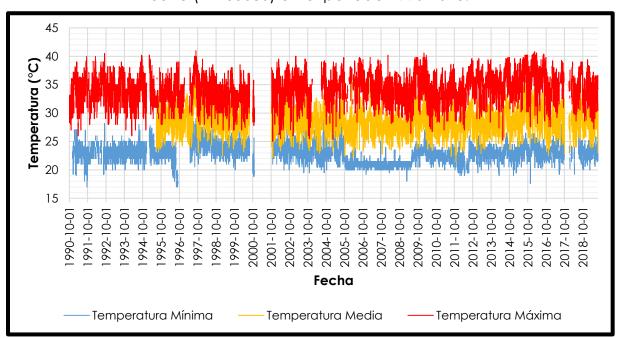

Dicha información estimada es validada respecto a los registros de Iluvia reportados por la estación de monitoreo a escala diaria, obteniendo buen desempeño en la simulación con un Coeficiente de Determinación R²= 0.93 y un Error Cuadrático Medio RMSE= 2.79 mm/día, reproducción satisfactoriamente el patrón espaciotemporal de las Iluvias (Figura 2-2). Así mismo, se realizó la validación de los datos a escala mensual, representando adecuadamente los valores acumulados de Iluvia con un R2= 0.97 y un RMSE= 13.77 mm/mes (Figura 2-3).

Figura 2-2. Precipitación diaria observada vs estimada para la estación El Salto (21255080) período 1990-2019.

Fuente: GIZ (2022)

Figura 2-3. Precipitación mensual observada vs estimada para la estación El Salto (21255080), período 1990-2019.

Fuente: GIZ (2022)


Una vez validada la información pluviométrica, se establece el período de análisis desde 1990 al 2022 (Figura 2-4). Las lluvias presentan una distribución bimodal con dos períodos húmedos alternados por dos períodos secos. Los períodos húmedos se generan en los meses de Marzo (118.99 mm), Abril (184.31 mm), Mayo (165.32 mm); y Septiembre (133.64 mm), Octubre (167.99 mm), Noviembre (139.32 mm), siendo el primer semestre el período de mayor pluviosidad. Los períodos secos se generan en los meses de Junio (65.13 mm), Julio (45.55 mm), Agosto (78.56 mm); y Diciembre (75.28 mm), Enero (54.27 mm), Febrero (76.63 mm), presentándose una mayor sequía a mediados del año. De igual manera, la precipitación promedio anual para el humedal es de 1, 304.99 mm/año aproximadamente.

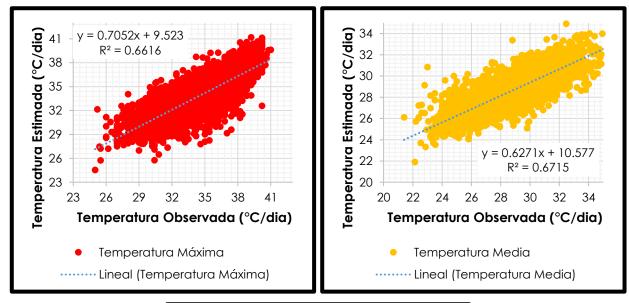
250 84.31 167.99 165.32 200 Precipitación (mm) 39.32 133.64 118.99 150 78.56 75.28 65.13 100 54.27 50 0 Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Mes

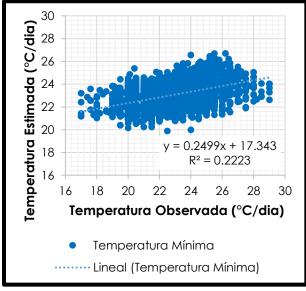
Figura 2-4. Precipitación media mensual para la estación El Salto (21255080) en el período 1990-2021.

Fuente: GIZ (2022)

2.2.2. Temperatura. El análisis de las temperaturas medias, máximas y mínimas, igualmente consideró los registros generados en la ERA para el departamento del Tolima (CORTOLIMA, 2021), debido a la discontinuidad y la corta extensión de los registros térmicos reportados por la estación El Salto (21255080), además de la insuficiencia en la captura de información en períodos recientes (Figura 2-5).

Figura 2-5. Temperaturas medias, máximas y mínimas diarias para la estación El Salto (21255080) en el período 1990-2018.

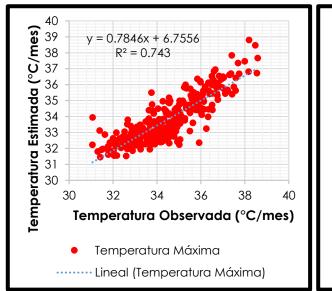

Fuente: GIZ (2022)

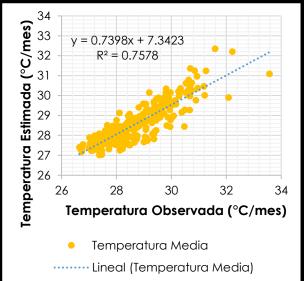

La validación de las temperaturas estimadas respecto a los registros tomados por la estación meteorológica El Salto (21255080), muestran un ajuste R^2 = 0.66 para las temperaturas máximas, R^2 = 0.67 para las temperaturas medias y un R^2 = 0.22 para las temperaturas mínimas.

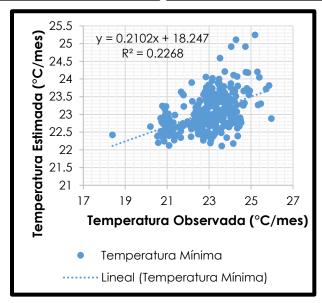
El ajuste relativamente bajo para las temperaturas mínimas es debido a posibles fallos en la estación al momento de captura de la información. Un ejemplo claro de este problema se evidencia durante el período 2005-10 al 2009-10 (Figura 2-6), presentándose cambios abruptos en el comportamiento y oscilación de los datos. En cuanto al rendimiento, para las temperaturas medias se observó un RMSE= 1.14°C/día, temperaturas máximas de RMSE= 1.58°C/día y temperaturas mínimas RMSE= 1.41°C/día, conservando un error razonable variando 1.37°C/día en promedio.

Para el caso de las temperaturas mensuales se obtuvo un mayor ajuste con R^2 = 0.74 para el caso de las temperaturas máximas y de R^2 = 0.75 para las temperaturas medias. Las temperaturas mínimas dado el desajuste observado a escala diaria, no presentó una mejoría a escala mensual, aun así, es evidente un comportamiento inadecuado de la estación para monitorear valores mínimos de temperatura, ya que de presentarse un desajuste total de los valores estimados respecto a los observados, las temperaturas máximas como las temperaturas medias, no tendrían ajustes cercanos al R^2 = 0.70 (Figura 2-7).

Figura 2-6. Temperatura máxima, media y mínima diaria observada vs estimada para la estación El Salto (21255080) período 1990-2018.

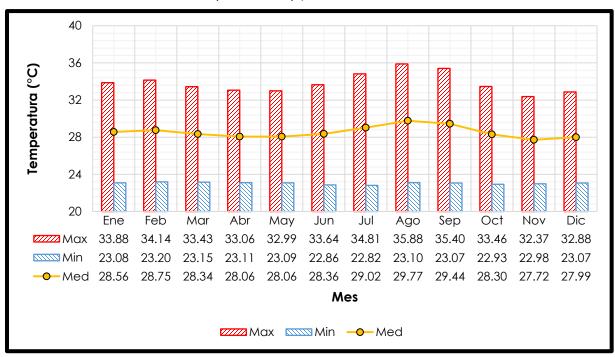





Fuente: GIZ (2022)

En cuanto a los errores asociados a las estimaciones, las temperaturas medias obtuvieron un RMSE= 0.58°C/mes, las temperaturas máximas RMSE= 1.04°C/mes y las temperaturas mínimas RMSE= 1.04°C/mes, reduciendo el error en la escala mensual comparada con la escala diaria con un RMSE= 0.88°C/mes en promedio (Figura 2-7).

Figura 2-7. Temperatura máxima, media y mínima mensual observada vs estimada para la estación El Salto (21255080) período 1990-2018.



Fuente: GIZ (2022)

Por último, considerando los datos de temperatura aportados por la ERA del departamento del Tolima para la estación El Salto (21255080), se selecciona un período de análisis desde 1990-2021 para representar el comportamiento térmico del humedal La Moya de Enrique a escala mensual como se evidencia en la Figura 2-8, considerando las temperaturas medias, máximas y mínimas.

Las temperaturas medias presentan variaciones leves a lo largo del año (0.46°C/mes aproximadamente) siendo el mes de Agosto el más cálido llegando

a 29.77°C. Las temperaturas más bajas se presentan en el mes de noviembre con 27.72°C.

Figura 2-8. Temperatura máxima, media y mínima mensual para la estación El Salto (21255080) período 1990-2021.

Fuente: GIZ (2022)

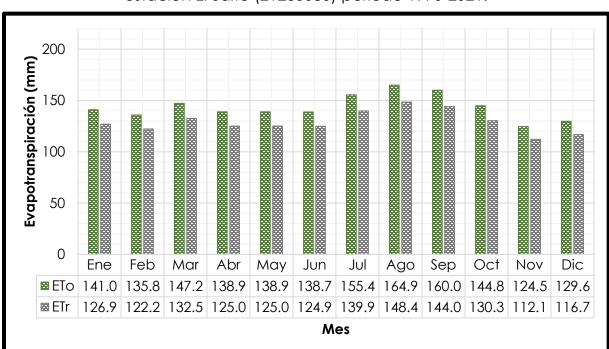
2.2.3. Evapotranspiración de referencia (ETo) y real (ETr). Para el cálculo de la ETo se implementó el método FAO-Penman Monteith descrito en (Allen et al., 1998) mediante la siguiente expresión:

$$\frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}$$

Donde:

Rn, Radiación neta en la superficie del cultivo (MJ m⁻² day⁻¹); G, Flujo de calor latente (MJ m⁻² day⁻¹); T, Temperatura media diaria a una altura de 2 metros (°C); u_2 , Velocidad del viento a una altura de 2 metros (m s⁻¹); e_s , Presión de vapor a saturación (kPa); e_a , Presión de vapor real (kPa); e_s - e_a , Déficit de presión de vapor (kPa); Δ , Pendiente de la curva de presión de vapor (kPa°C⁻¹); γ , Constante psicrométrica (kPa°C⁻¹).

Este método es aplicable a zonas con escasa disponibilidad de información meteorológica siguiendo la metodología descrita en FAO (2006) la cual incluye


métodos para la estimación de la ETo a partir pocas variables climatológicas como la temperatura máxima y mínima, y de información geoespacial como la latitud y la altitud de la estación de monitoreo. De igual manera, esta metodología ha sido adoptada por el IDEAM para su reproducción y aplicación (Gómez y Cadena, 2017).

La estimación de la ETr se determinó aplicando un coeficiente de vegetación (Kc) el cual varía de acuerdo con la cobertura de la superficie terrestre. Para el presente estudio, se asume un Kc= 0.9 debido a la presencia de una lámina de agua en gran parte de la superficie del humedal. Los cálculos de desarrollaron aplicando la siguiente ecuación: $ETr = K_c \times ETo$

Donde, ETr= Evapotranspiración real (mm/mes); K_c = Coeficiente de vegetación

Para el humedal La Moya de Enrique se observa una mayor capacidad de evapotranspiración en los meses de Julio (ETo= 155.4 mm; ETr= 139.9 mm), Agosto (ETo= 164.9 mm; ETr= 148.4 mm) y Septiembre (ETo= 160.0 mm; ETr= 144.0 mm), correspondiente a los meses con mayor temperatura y menor pluviosidad para La Moya de Enrique. Así mismo, los meses de Noviembre (ETo= 124.5 mm; ETr= 112.1 mm) y Diciembre (ETo= 129.6 mm; ETr= 116.7 mm) se presenta una disminución en la pérdida de agua (

Figura **2-1**).

Figura 2-1. Evapotranspiración media mensual de referencia y real para la estación El Salto (21255080) período 1990-2021.

Fuente: GIZ (2022)

2.3. HIDROGRAFÍA

El humedal La Moya de Enrique se encuentra localizado sobre la parte baja de la subzona hidrográfica del Río Lagunilla (código 2125.02) al margen derecho de la Quebrada EL Tunal, la cual hace su aporte hídrico al sistema, siendo este un regulador natural del flujo para esta corriente hídrica. Sus aguas desembocan al Quebrada La Garrapata (código 2125.02.3) la cual a su vez desemboca directamente al Río Magdalena (Figura 2-12).

August 125 May 1997

August 12

Figura 2-2. Mapa hidrográfico del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

CAPÍTULO 3. COMPONENTE BIÓTICO

3. COMPONENTE BIÓTICO

3.1. FLORA

3.1.1. Marco teórico.

- **Fitoplancton.** El fitoplancton constituye un ensamble de organismos planctónicos en su mayoría fotoautotróficos, adaptados a la suspensión en aguas abiertas de los ecosistemas lénticos, lóticos y marinos, sometido a movimiento pasivo por el viento y las corrientes, que comúnmente se presentan la superficie del agua o completan una porción de sus ciclos vitales en dicha zona. La mayoría de estos organismos son utilizados como indicadores de la calidad del agua (Roldan y Ramírez, 2008).
- A. División Cyanophyta. Las algas verdeazules denominadas Cyanobacteria, dada su afinidad con las bacterias respecto a la organización procariótica, sin embargo, el tamaño es su diferencia fundamental, pues las algas verdeazules son de mayor tamaño que aquellas y Adicionalmente, las algas son productores primarios del plancton, mientras que muy pocas bacterias lo son (Ramírez, 2000).

Dentro de las características ecológicas de las cianófitas se encuentra la temperatura óptima de desarrollo que oscila entre 35 y 40°C (Palmer, 1962). Crecen normalmente en medios alcalinos, y sus poblaciones fluctúan dependiendo de la relación de concentración del nitrógeno y el fósforo. Estas algas se multiplican especialmente en situaciones marginales o cambiantes, por ello, se ha generalizado el concepto de que la presencia del florecimiento de concentraciones de cianófitas en ecosistemas de agua dulce indica eutrofización avanzada (Ramírez, 2000).

La capacidad de fijar nitrógeno N_2 confieren a las cianófitas que la poseen un significado especial en el medio acuático, pues regula la relación entre el fósforo y el nitrógeno de las aguas (Ramírez, 2000).

B. División Euglenophyta. Puede decirse que los organismos pertenecientes a esta división son casi enteramente dulceacuícolas, aunque unos pocos representantes son de ambientes estuarinos y marinos. Los euglenoides se encuentran normalmente en pequeños cuerpos de agua ricos en materia orgánica y, en general, son organismos unicelulares solitarios, a excepción del género colonial llamado Colacium (Ramírez, 2000).

Poseen diferentes formas de nutrición: holofítica, holozoica o saprofítica. En todos los casos, el material de reserva se denomina paramilon y se almacena en

corpúsculos, llamados pirenoides, de forma característica para cada especie dada. Muchas especies tienen uno o dos pirenoides, otras poseen en la parte delantera de la célula una mancha ocular llamada estigma, la cual les sirve en la orientación (Ramírez, 2000). En general, se considera que las euglenofitas cumplen un papel menor en los lagos tropicales, donde se hallan normalmente varias especies de Trachelomonas (Lewis, 1978).

C. División Chrysophyta. Las crisofitas se conocen también como algas pardoamarillas. Son organismos unicelulares, coloniales o filamentosos, y sus células pueden estar incluidas dentro de una pared celular a veces rodeada de silicio o pueden permanecer desnudas. Almacenan una serie de sustancias de reserva: crisosa, crisolaminarina, leucosina y lípidos, pero nunca almidón. De las seis clases que posee la división, Chrysophyceae y Bacillariophyceae son las más importantes, desde el punto de vista cuantitativo, en los ecosistemas lacustres dulceacuícolas (Ramírez, 2000).

Las Chrysophyceae o algas doradas son, en su mayoría, flageladas, y pueden existir solas o en colonias. El grupo como tal predomina en aguas dulces y se presenta poco en aguas salobres o saladas. La mayoría son fototróficas, pero algunas pueden ser mixotróficas y holozoicas (Ramírez, 2000).

D. División Pyrrhophyta. Estas algas son llamadas dinoflageladas y se presentan en formas marinas, salobres y dulces. La forma prevaleciente de la división es la biflagelada, pero también se presentan formas no móviles. Poseen nutrición diversificada: fotosintética, heterotrófica, saprofítica, parasítica, simbiótica y holozoica; además, muchas son auxotróficas para varias vitaminas. El núcleo presenta características inusuales de procariotes y eucariotes, recibiendo por ello el nombre de mesocariótico (Ramírez, 2000). Los organismos con pared celular se llaman tecados y tienen dos mitades que se encuentran a lado y lado del cíngulo: una epiteca o teca superior y una hipoteca o teca inferior. La pared puede ser homogénea o puede tener placas en un número definido, y su ordenamiento y número de las placas es fundamental en sistemática (Ramírez, 2000).

En los dinoflagelados desnudos o sin teca, Gimnodynium por ejemplo, las valvas anterior y posterior se llaman epivalva e hipovalva, respectivamente (Ramírez, 2000). Este grupo tiene una importancia similar a las Cryptophyta en el plancton de la mayoría de los lagos tropicales, ya que están casi siempre presentes, aunque generalmente en poca abundancia (Lewis y Riehl, 1982).

E. División Chlorophyta. Estos organismos constituyen uno de los mayores grupos de algas, si se tiene en cuenta su abundancia en géneros y especies, al

igual que su frecuencia y ocurrencia. Crecen en aguas de amplio rango de salinidad; pueden ser planctónicos o bentónicos, o pueden presentarse en hábitats subaéreos. Es común que posean talos unicelulares, coloniales cenóbicos o no cenóbicos, filamentosos ramificados o no, membranosos, de forma laminar o tubular (Ramírez, 2000).

Las células son, en su mayoría, uninucleadas, pero existen formas multinucleadas o cenocíticas. Su organela más conspicua es el cloroplasto el cual, aunque posee una gran variedad, casi siempre adopta dos formas básicas (Ramírez, 2000). Para las algas verdes el punto óptimo de temperatura se encuentra entre 30 y 35°C y el pH óptimo para cada especie es variable, dada la complejidad del grupo como tal. Pueden hallarse organismos que crecen en gran número bajo un pH ácido, como en el caso de las desmidiáceas, cuyo pH está entre 5.4 y 6.8; o con un pH básico, como en las pertenecientes al orden Chlorococcales.

• Generalidades y diversidad de la flora en Colombia. Las plantas albergan una variedad de organismos autótrofos, los cuales bajo la clasificación actual están comprendidos por los siguientes grupos taxonómicos: Las algas verdes, Hepáticas, Briofitos, Antoceros, Licofitas, Monilofitas, Gimnospermas y Angiospermas, de las cuales las Licofitas, Monilofitas, Gimnospermas y Angiospermas conforman el grupo de las denominadas plantas vasculares (Simpson, 2019). La diversidad de plantas vasculares de la tierra se estima que está entre las 223, 000 y las 420, 000 especies (Goaverts, 2003).

La superficie suramericana alberga cerca de 90, 000 especies y se estima que en el norte de los andes se encuentra el 55% de la flora suramericana y el 22% de la flora mundial, por tal motivo es considerado un hotspot de biodiversidad (Myers et al., 2000; Jørgensen et al., 2011). En Colombia se ha estimado que el número de especies de plantas vasculares está cerca de las 24, 405 especies (Jørgensen et al., 2011) y el número de angiospermas cerca de las 23, 000 especies (Rangel-Ch, 2015). En el Tolima el número de angiospermas está estimado en 2, 724 especies (Bernal et al., 2019) y para el bosque seco tropical dentro de los límites políticos del departamento se reportan 1, 048 especies distribuidas dentro de 112 familias (Villanueva et al., 2014).

• Flora como indicadora de la calidad del hábitat. El rol de la vegetación es muy importante para su funcionamiento, debido a proveer hábitat, alimento para la fauna, formación de suelo, regulación del agua, regulación de la materia, fotosíntesis y regulación del clima (Beltran, 2012). La pérdida de la cobertura del bosque tropical debido a la ampliación de la frontera agrícola y la deforestación ha causado efectos adversos que han derivado en aumento de la temperatura anual, aumento de las lluvias torrenciales, de sequías en algunas partes del mundo y de las inundaciones, estos impactos negativos

pueden ser mitigados o disminuidos cuando la cobertura vegetal aumenta por la acción amortiguadora de los bosques frente a una superficie sin cobertura forestal (Balvanera, 2012; FAO y PNUMA, 2020).

Los bosques secos tropicales en buen estado han estado asociados a disponibilidad de aguas limpias, mantenimientos de la fertilidad del suelo, regulación climática, control de inundaciones, bioregulación, y fuente de opciones para sustentar la biodiversidad vegetal en el futuro (Maass et al., 2005).

• Flora asociada a los humedales de zonas bajas del Tolima. El Bosque Seco Tropical (Bs-T) es un ecosistema ubicado en regiones de estaciones secas largas y períodos de abundante precipitación, en los cuales el clima es cálido durante el transcurso del año (Bocanegra-González et al., 2019). La mitad de la cobertura del Bs-T remanente se encuentra en el continente suramericano y en Colombia ocupa la costa caribe y los valles interandinos del norte de Sudamérica con niveles intermedios de riqueza de especies (Latin American and Caribbean Seasonally Dry Tropical Forest Floristic Network [DRYFLOR], 2016).

Así mismo, este bosque es considerado uno de los ecosistemas más amenazados (Miles et al., 2006) y en Colombia está distribuido en parches de bosque desde la región Caribe hasta enclave del río Patía al suroccidente del país (Pizano y García, 2014). Por tal motivo el Bs-T ha sido priorizado para adelantar estrategias de conservación (DRYFLOR, 2016; Bocanegra-González et al., 2018).

A pesar de ser indicado como prioritario, actualmente la representación en el sistema nacional colombiano de áreas protegidas (SINAP) es bajo y sumado a la poca información sobre su biodiversidad se han limitado las estrategias para adelantar su conservación y recuperación, pero se destacan los esfuerzos por continuar caracterizando la flora y la diversidad de especies a nivel local (Bocanegra-González et al., 2019).

La riqueza de especies en el Bs-T para Colombia se registró en 2, 569 especies, con cerca de 1, 426 especies reportadas para el Valle del Magdalena. El 90% de las especies son nativas, y las familias Fabaceae, Rubiaceae, Malvaceae, Poaceae y Orchidaceae son las más abundantes. Entre las especies más frecuentes se registran Acalypha diversifolia, Cecropia angustifolia, Cissus verticilada y Solanum americanum (Pizano et al., 2014).

Para el Tolima, las familias más abundantes son Fabaceae, Asteraceae, Euphorbiaceae, Malvaceae y Rubiaceae. En cuanto a los géneros, los más abundantes son Croton, Ficus, Piper y Trichillia. La flora del Bs-T para el departamento del Tolima se encuentra concentrada en relictos boscosos y aún es necesario seguir adelantando estudios tanto en el Bs-T como en sus ecosistemas asociados (Villanueva et al., 2014).

Las plantas del Bs-T despliegan también rasgos funcionales asociados con la velocidad de crecimiento, defensa contra herbívora, control de agua y control de la temperatura tanto en las hojas como en el tronco, estos rasgos que aún continúan en estudio son fundamentales para entender y predecir la respuesta y adaptabilidad del Bs-T al cambio climático y a las constantes presiones antropogénicas que transforman a estos bosques (Pizano et al., 2014).

3.1.2. Metodología.

3.1.2.1. Fitoplancton.

• **Métodos de campo.** Se utilizó una red de malla fina con tamaño de poro definido para fitoplancton de 25 µ, que permiten observar de manera cualitativa las comunidades de plancton existentes en la zona, con la red los organismos se obtienen por filtración y la selección se realiza según sea el tamaño del poro.

La red arrojadiza consta de un tronco con un diámetro de aproximadamente 25 cm y una longitud de un metro, el poro de la red es de 25 μ y un vaso receptor de un litro de capacidad.

La red se mantiene de manera subsuperficial por un tiempo de cinco minutos y a una velocidad constante y arrastres lineales (Figura 3-1), en total en el humedal se hicieron tres arrastres en áreas distintas (Borde 1, Borde 2 y Centro). Las muestras fueron depositadas en frascos de 500 ml y preservadas con formol buferizado al 10%. Adicionalmente, se elaboró una ficha de campo en donde se registraron los datos de la localidad y del hábitat de la zona muestreada, además cada una de las estaciones fue descrita y georeferenciada con GPS marca GARMIN-60CSx.

• **Métodos de laboratorio.** Se realizó la determinación y conteo de plancton con la ayuda de un microscopio óptico Motic BA-210, usando la cámara de conteo Sedgwick-Rafter (SR), que limita el área y volumen, permitiendo calcular las densidades poblacionales después de un período de asentamiento considerable, mediante un conteo en bandas. Finalmente, la densidad de células por unidad de área será calculada siguiendo la fórmula (APHA, 1992 Ramírez, 2000):

Organismos/mm² =
$$\frac{N \times A_t \times V_t}{A_c \times V_s \times A_s}$$

Donde:

N= Número de organismos contados,

At= Área total de la cámara (mm²)

Vt= Volumen total de la muestra en suspensión

Ac= Área contada (bandas o campos) (mm²)

Vs= Volumen usado en la cámara (ml)

As= Área del sustrato o superficie raspada (mm²)

Figura 3-1. Método de muestreo utilizado en la colecta de fitoplancton en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

Para el conteo se analizaron 30 campos en un ml de cada una de las muestras colectadas. Los organismos fueron observados bajo un microscopio óptico Motic BA-210, con el objetivo de 40X, y se obtuvo la medida de la densidad de organismos presentada como individuos por metro cuadrado (m²), para ello se utilizó el método de conteo de bandas por campos aleatorios descrito por APHA (2012) y Ramírez, (2000).

La identificación taxonómica de las algas se hizo siguiendo las claves de Yacubson (1969), Prescott (1973), Needham y Needham (1978), Streble y Krauter (1987), Lopretto y Tell (1995), Ramírez (2000), y Bellinger y Sigee (2010). Además, se soportó la determinación de las algas con la base de datos electrónica.

3.1.2.2. Flora.

• **Métodos de campo.** La colecta del material biológico se realizó mediante el uso de la técnica propuesta por Villareal et al. (2004), RAP (Rapid Assessment Program). Se trazaron transectos de 50 x 2 metros, teniendo presente a los individuos con DAP (Diámetro a la Altura del Pecho) ≥ 1 centímetro a lo largo, altura total, número de colección y observaciones generales. Se colectaron muestras botánicas provenientes de especies herbáceas, arbustivas y leñosas presentes. Registros fotográficos y levantamiento de información morfológica fueros realizados para cada muestra colectada (Figura 3-2). Las muestras fueron preservadas prensadas en papel periódico en alcohol al 75% de acuerdo con lo propuesto por Esquivel (1997), luego fueron transportadas hasta el Herbario TOLI de la Universidad del Tolima (Figura 3-2).

Figura 3-2. Metodología de colecta de muestras en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

• **Métodos de laboratorio**. Las muestras fueron trasladadas al herbario TOLI de la Universidad del Tolima para su secado en horno (Figura 3-3). Una vez secas, mediante claves botánicas (Gentry, 1993; Keller, 1996; Vargas, 2002), consultas con expertos, bases de datos de herbarios digitales, el catálogo de plantas de Colombia y libros, las plantas colectadas se caracterizaron y determinaron. Solamente las muestras fértiles (aquellas con presencias de flores, frutos e inflorescencias) fueron escogidas para ingreso al herbario TOLI de la Universidad del Tolima.

• Análisis de datos. La búsqueda de información secundaria fue realizada en diferentes bases de datos como Google académico, Science Direct, Springer, Jstor, Wiley, Redalyc, Scielo, Worldfloraonline, Tropicos, Catálogo de plantas de Colombia, empleando palabras claves como: flora, bosque tropical, bosque seco, bosque húmedo, seasonally tropical dry forest. Para la búsqueda de material bibliográfico en inglés se emplearon marcadores booleanos (ej., or, not, and).

Figura 3-3. Secado de muestras en el Herbario TOLI de la Universidad del Tolima procedentes del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

A. Composición y abundancia de especies. Se calculó la abundancia relativa (AR) para las especies presentes, y la riqueza específica para las categorías taxonómicas de orden, familia, género y especie. Se determinó a partir del número de individuos colectados de cada especie y su relación con el número total de individuos de la muestra, así:

Dónde: AR= Número de individuos de cada especie en la muestra x 100; n1= El número de individuos registrados de cada taxón; N= Total de individuos en la muestra.

B. Categorías ecológicas y especies de interés para la conservación. Fue elaborada una tabla donde se incluyó las categorías ecológicas de las especies determinadas y el grado de amenaza.

3.1.3. Resultados-Flora presente en el humedal. (Anexo A)

3.1.3.1. Fitoplancton.

A. Composición y abundancia de especies. La comunidad fitoplanctónica del humedal La Moya de Enrique estuvo compuesta por siete filos, siete clases, 12 órdenes taxonómicos, 18 familias y 20 géneros (Tabla 3-1).

La clase con mayor abundancia fue Bacillariophyceae, seguida de Cryptophyceae, en contraste la menor abundancia la registró Conjugatophyceae. La abundancia de la clase Bacillariophyceae en el humedal La Moya de Enrique corresponde a la dinámica natural de la comunidad fitoplanctónica en este tipo de ecosistemas, debido a que este grupo de organismos posee una distribución amplia y se encuentra en todo tipo de ambientes acuáticos (Silva et al., 2008).

Tabla 3-1. Abundancia relativa de los géneros de fitoplancton registrados en el humedal La Moya de Enrique, Ambalema-Tolima.

Phyllum	Clase	Orden	Familia	Género	Células /mm²	AR%
Charophyta	Conjugatophyceae	Desmidiales	Desmidiaceae	Cosmarium	19	0.74%
Chlorophyta	Chlorophyceae	Chlamydomonadales -	Haematococcaceae	Haematococcus	97	3.68%
			Sphaerocystidaceae	Sphaerocystis	58	2.21%
		Sphaeropleales	Hydrodictyaceae	Tetraedron	19	0.74%
			Selenastraceae	Monoraphidium	19	0.74%
Cryptophyta	Cryptophyceae	Pyrenomonadales	Pyrenomonadaceae	Rhodomonas	892	33.82%
Cyanobacteria	Cyanophyceae	Oscillatoriales	Oscillatoriaceae	Oscillatoria	78	2.94%
Dinophyta	Dinophyceae	Peridiniales	Peridiniaceae	Peridinium	136	5.15%
Euglenophyta	Euglenophyceae	Euglenales	Euglenaceae	Trachelomonas	19	0.74%
			Euglenaceae	Euglena	155	5.88%
			Phacaceae	Phacus	136	5.15%
Heterokontophyta	Bacillariophyceae	Achnanthales	Cocconeidaceae	Cocconeis	39	1.47%
		Bacillariales	Bacillariaceae	Nitzschia	621	23.53%
		0 1 11 1	Gomphonemataceae	Gomphonema	19	0.74%
		Cymbellales	Rhoicospheniaceae	Rhoicosphenia	116	4.41%
		Fragilariales	Fragilariaceae	Synedra	19	0.74%
		Naviculales ·	Naviculaceae	Navicula	58	2.21%
			Pinnulariaceae	Pinnularia	97	3.68%
	Europii and and a second	Ever all avi all a	Francil aviana a an	Diatoma	19	0.74%
	Fragilariophyceae	Fragilariales	Fragilariaceae	Fragilaria	19	0.74%
		Total general			2638	100

Fuente: GIZ (2013)

3.1.3.2. Flora.

A. Composición y abundancia de especies. Se registró un total de 39 individuos agrupados en 19 especies, 17 géneros, 15 familias y nueve órdenes. Los órdenes con mayor representatividad de familias fueron Caryophyllales y Sapindales. En cuanto a las familias las de mayor representatividad fueron Bignoniaceae y Fabaceae (Tabla 3-2).

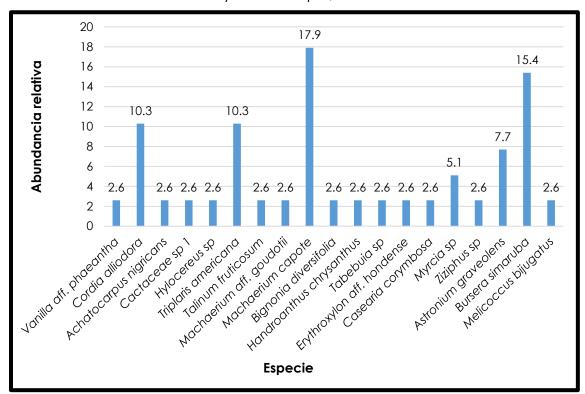
Tabla 3-2. Abundancia relativa de las especies de flora registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

Orden	Familia	Genero	Especies	AR%
Asparagales	Orquidaceae	Vanilla	Vanilla aff. phaeantha	2.6
Boraginales	Boraginaceae	Cordia	Cordia alliodora	10.3
	Achatocarpaceae	Achatocarpus	Achatocarpus nigricans	2.6
	Cactaceae		Cactaceae sp 1	2.6
Caryophyllales	Caciaceae	Hylocereus	Hylocereus sp	2.6
	Polygonaceae	Triplaris	Triplaris americana	10.3
	Talinaceae	Talinum	Talinum fruticosum	2.6
Fash asla a	Fabaceae	Machaerium	Machaerium aff. goudotii	2.6
Fabales	rabaceae	Machaerium	Machaerium capote	17.9
Lamiales		Bignonia	Bignonia diversifolia	2.6
	Bignoniaceae	Handroanthus	Handroanthus chrysanthus	2.6
		Tabebuia	Tabebuia sp	2.6
Malpiahialos	Erythroxylaceae	Erythroxylon	Erythroxylon aff. hondense	2.6
Malpighiales	Salicaceae	Casearia	Casearia corymbosa	2.6
Myrtales	Myrtaceae	Myrcia	Myrcia sp	5.1
Rosales	Rhamnaceae	Ziziphus	Ziziphus sp	2.6
	Anacardiaceae	Astronium	Astronium graveolens	7.7
Sapindales	Burseraceae	Bursera Bursera simaruba		15.4
	Sapindaceae	Melicoccus	Melicoccus bijugatus	2.6

Fuente: GIZ (2022)

Los órdenes Caryophyllales y Sapindales se han estimado en contener alrededor del 9.32% de la diversidad total de eudicotiledóneas (Magallón et al., 1999; Stevens, 2017), además de ser grupos ricos en especies, con un total de 18, 170 entre estos dos órdenes a nivel mundial (Cole et al., 2019). Para el Tolima estos dos órdenes albergan un total de 270 especies (Bernal et al., 2019).

Las familias Bignoniaceae y Fabaceae son familias que en conjunto contienen cerca de 20, 370 especies a nivel mundial (Stevens, 2022) y 216 especies para el


Tolima, correspondiente a un 7.9% del total de angiospermas presentes en el departamento (Bernal et al., 2019) (Figura 3-4).

Las especies con mayor abundancia relativa fueron Machaerium capote (17.9%), Bursera simaruba (15.4%) y Cordia alliodora (10.3%). La especie M. capote ha sido reportada con excelentes propiedades óptimas para restauración ecológica, donde, se destaca su mejoría a los suelos, aporte a la estructura del bosque, potencial de dispersión alto, tolerancia a condiciones de sitios secos y degradados y, además, indicada para ser priorizada en escenarios de regeneración de pastizales y arbustales (Torres-Rodríguez et al., 2019).

La especie B. simaruba se destaca por su crecimiento rápido, aporte a la estructura del bosque y surgimiento tardío en sucesiones vegetales (Torres-Rodríguez et al., 2019). También se ha reportado tasas de diversidad genéticas bajas en poblaciones ubicadas en venadillo, cerca del área del presente Humedal, por lo que se sugieren estrategias para conservar y priorizar estas poblaciones, claves para el mantenimiento del bosque seco tropical y ecosistemas asociados (Bocanegra-González et al., 2019).

La especie *C. alliodora* se destaca por su crecimiento rápido, aporte a la estructura del bosque y surgimiento temprano, intermedio y tardío en sucesiones vegetales, por lo que se ha sugerido como opción para restauración ecológica asistida en pastizales y arbustales (Torres-Rodríguez *et al.*, 2019). También se ha reportado para esta especie que su máximo de crecimiento es a los 65 años con 205.5 cm de diámetro, un dato de importancia para promover programas de conservación de los parches de bosque seco tropical vigentes, debido a las altas tasas de tala indiscriminada (Briceño *et al.*, 2016).

Las familias Fabaceae y Bignoniaceae igual que en el presente estudio, fue reportada como una de las más representativas en el plan de manejo en el mismo humedal en el año 2010 (GIZ, 2010). En ambos estudios se reportaron dos especies iguales: Handroanthus chrysanthus y Tabebuia sp En el estudio anterior fue registrada Crescentia cujete, pero no en el presente estudio, a pesar de haber sido observada en áreas cercanas al humedal. En el presente estudio fue reportada Bignonia diversifolia, la cual no fue registrada en el anterior estudio. Se destaca también la presencia en los dos estudios de especies de porte arbóreo como Astronium graveolens y Triplaris americana (GIZ, 2010).

Figura 3-4. Abundancia relativa de las especies de flora registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

B. Especies de interés para la conservación. La vegetación del humedal La Moya de Enrique registra cuatro especies en la categoría de preocupación menor (LC) y nueve especies se encuentran como no evaluadas (Tabla 3-3). A pesar de estas especies no estar en algún grado de amenaza serio, el ecosistema donde se encuentra el espejo de agua que corresponde al bosque seco tropical si está considerado en estado crítico (Pizano et al., 2014) y las especies son nativas para Colombia (Bernal et al., 2019), por lo que ameritan ser tenidas en cuenta en proyectos de conservación.

Solamente una de las especies registradas se encuentra dentro de la categoría de amenaza En Peligro (EN) la cual es Vanilla aff. phaeantha quien además se encuentra en el apéndice II del CITES (Bernal et al., 2019).

Tabla 3-3. Especies de interés para la conservación de flora registradas en el humedal La Moya de Enrique, Ambalema-Tolima. IUCN: preocupación menor (LC).

Orden Familia		Especies	CITES	Res. 1912	IUCN
Asparagales Orquidaceae		Vanilla aff. phaeantha	II		EN
Boraginales Boraginaceae		Cordia alliodora	NE		NE
	Achatocarpaceae	Achatocarpus nigricans	NE		NE
Caryophyllales	Polygonaceae	Triplaris americana	NE		NE
	Talinaceae	Talinum fruticosum	NE		LC
Faib ails s	Earla ar a a ar a	Machaerium aff. Goudotii	NE		NE
Fabales	Fabaceae	Machaerium capote	NE		LC
Lauraiada	Dienopiero	Bignonia diversifolia	NE		LC
Lamiales	Bignoniaceae	Handroanthus chrysanthus	NE		LC
AA orloo i orlo i orloo	Erythroxylaceae	Erythroxylon aff. Hondense	NE		NE
Malpighiales	Salicaceae	Casearia corymbosa	NE		NE
	Anacardiaceae	Astronium graveolens	NE		NE
Sapindales	Burseraceae	Bursera simaruba	NE		NE
	Sapindaceae	Melicoccus bijugatus	NE		NE

Fuente: GIZ (2022)

3.2. FAUNA

3.2.1. Marco teórico.

3.2.1.1. Zooplancton.

• Generalidades y diversidad de zooplancton en Colombia. Está representado por especies de varios filos: protozoarios, rotíferos, celenterados, briozoarios y sobre todo por algunos grupos de crustáceos tales como los cladóceros, los copépodos y los ostrácodos. Cabe citar también las larvas de muchos insectos y los huevos y larvas de peces. La mayoría de organismos que pertenecen al zooplancton se alimentan de otros animales más pequeños. El zooplancton está compuesto, desde el punto de vista trófico, por consumidores primarios herbívoros y consumidores secundarios (Marcano, 2003).

Con respecto a las especies que habitan las aguas dulces, se ha observado una característica muy peculiar y es que la mayoría son cosmopolitas; por tanto, es frecuente encontrar algunas especies en latitudes y climas muy diferentes. Así se ha comprobado que existen muchas especies que se encuentran en los lagos de Europa que se encuentran también en los lagos de Norteamérica. Muchas

especies de aguas dulces templadas que se encuentran también en aguas tropicales. Los grupos de seres vivos que presentan especies con mayor grado de cosmopolismo son: las diatomeas, los dinoflagelados, las clorofíceas, los protozoarios y los copépodos (Marcano, 2003).

- A. Rotíferos. Los rotíferos son un filo de animales metazoarios invertebrados, microscópicos, con simetría bilateral, segmentación aparente, porción caudal ahorquillados y cubiertos las hembras de una cutícula endurecida, la loriga. Lo más llamativo de estos animales es un órgano distorcial en el extremo anterior, con muchas pestañas o cilios, que produce un movimiento aparentemente rotatorio y que utiliza para nadar o atraer el alimento. Son unisexuales; los machos carecen de loriga, son diminutos o degenerados o faltan, en cuyo caso la reproducción es partenogénica estacional. Abundan en las aguas estancadas y atraviesan, cuando las condiciones son desfavorables, estados de enquistamiento y vida latente.
- B. Cladóceros. Se han denominado comúnmente pulgas de agua y son predominantemente dulceacuícolas. Abundan en la zona litoral de los lagos, pero también están ampliamente representados en el plancton. Se reproducen partenogenéticamente por desarrollo directo a partir de un número variable de huevos. También poseen uno o varios períodos de reproducción sexual, ciclomorfosis muy evidentes y gran capacidad migratoria (Gonzales, 1988).

Son filtradores y se considera que en aguas eutróficas hay más cladóceros y rotíferos que copépodos. En los cladóceros adultos el número de mudas es más variable que en los estadios juveniles, variando desde unas pocas midas hasta más de veinte (Wetzel, 1981).

- C. Copépados. Se distribuyen tanto a nivel litoral como pelágico bentónico. Presentan metamorfosis completa: huevo, larva naupliar con tres pares de apéndices y que sufre mudas sucesivas (diez en los ciclopoides). Los cinco o seis primeros estadios larvales se denominan nauplios y los restantes copepaditos, siendo el último de ellos en adulto (Gonzales, 1988). Los organismos de este orden se pueden dividir en tres subórdenes: Calanoides, Ciclopoides y Harpaticoides, estos tres órdenes se distinguen por la estructura del primer par de antenas, por el urosoma y el quinto par de patas.
- **Producción secundaria del zooplancton**. La producción secundaria de los cuerpos de agua está sustentada por el zooplancton, el zoobentos y los peces. Participan en ella tanto vertebrados como invertebrados que interactúan de manera compleja en el aspecto trófico porque sus relaciones pueden cambiar

durante el ciclo de vida o de un lugar a otro. La producción secundaria puede definirse como la biomasa acumulada por las poblaciones heterotróficas por unidad de tiempo. Esta definición se refiere a la producción neta. El incremento puede medirse como número y biomasa o puede expresarse como energía o cantidad de un elemento constituyente, por lo general en carbono. La medición exacta de la biomasa es básica para calcular la producción secundaria, lo que se hace es estimar el volumen tomando las dimensiones del animal. Por último para la biomasa el volumen se expresa como peso (González, 1988).

3.2.1.2. Macroinvertebrados.

• Generalidades y diversidad de macroinvertebrados. Dentro del grupo de los macroinvertebrados acuáticos pueden considerarse a todos aquellos organismos con tamaños superiores a 0.5 mm y que por lo tanto, se pueden observar a simple vista, de esta manera, se pueden encontrar poríferos, hidrozoos, turbelarios, oligoquetos, hirudíneos, insectos, arácnidos, crustáceos, gasterópodos y bivalvos. El Phyllum Arthropoda representa el grupo más abundante, dentro del cual se encuentran las clases Crustácea, Insecta y Arachnoidea (Roldán y Ramírez, 2008).

En ecosistemas lénticos, como lagos, charcas, represas y humedales, los macroinvertebrados pueden estar asociados tanto a las zonas de litoral como a la limnética y la profunda, en las que la mayor diversidad se encuentra hacia las zonas de litoral debido a la presencia de vegetación acuática (que favorece su desarrollo), mientras en la zona limnética, es decir de aguas abiertas unas pocas especies de macroinvertebrados flotantes pueden vivir y finalmente, en la zona profunda una diversidad menor con especies abundantes (Roldán y Ramírez, 2008)

Los grupos de macroinvertebrados de aguas dulces presentan una gran variedad de adaptaciones, las cuales incluyen diferencias en sus ciclos de vida. Algunos macroinvertebrados desarrollan su ciclo de vida completo en el agua y otros sólo una parte de él, además el tiempo de desarrollo es altamente variable (depende de la especie y los factores ambientales), algunos con varias generaciones al año (multivoltinos) principalmente en la región tropical, otros con una generación (univoltinos) y una o dos generaciones (semivoltinos) (Hanson et al., 2010).

• Papel de la comunidad bentónica en la dinámica de los nutrientes. En cuanto a su papel ecológico, los macroinvertebrados se constituyen en el enlace para mover la energía hacia diferentes niveles de las cadenas tróficas acuáticas, por lo tanto, controlan la productividad primaria ya que con el consumo de algas y otros organismos asociados al perifiton y el plancton (Hanson et al., 2010).

La materia orgánica que se va depositando en el fondo de lagos y ríos entra en proceso de descomposición durante el cual se liberan los nutrientes, los que deben regresar al cuerpo de agua para continuar así el ciclo de producción. En este paso los organismos bentónicos desempeñan un papel importante en la remoción de estos nutrientes. Muchos de ellos, que viven sobre el fondo o enterrados en él en su proceso de movimiento para buscar alimento, oxígeno y protección, remueven los sedimentos, ayudando de esta manera a liberar los nutrientes allí atrapados (Roldán y Ramírez, 2008).

Los macroinvertebrados acuáticos como bioindicadores de la calidad del hábitat. El uso de los macroinvertebrados acuáticos como indicadores de la calidad de las aguas de los ecosistemas lóticos y lénticos (ríos, lagos o humedales) está generalizándose en todo el mundo (Prat et al., 2009). Su uso se basa en el hecho de que dichos organismos ocupan un hábitat a cuyas exigencias ambientales están adaptados. Cualquier cambio en las condiciones ambientales se verán reflejadas, por tanto, en las estructuras de las comunidades que allí habitan. Un río que ha sufrido los efectos de la contaminación es el mejor ejemplo para ilustrar los cambios que suceden en las estructuras de los ensambles, las cuales cambian de complejas y diversas con organismos propios de aguas limpias, a simples y de baja diversidad con organismos propios de aguas contaminadas. La cantidad de oxígeno disuelto, el grado de acidez o basicidad (pH), la temperatura y la cantidad de iones disueltos (conductividad) son a menudo las variables a las cuales son más sensibles los organismos. Dichas variables cambian fácilmente por contaminación industrial y doméstica (Roldán y Ramírez, 2008).

3.2.1.3. Lepidópteros.

• Generalidades y diversidad de mariposas en Colombia. La fauna de mariposas en Colombia es una de las más diversas y posiblemente la más compleja de cualquier país en la tierra. Desde los bosques húmedos de la región del Chocó del Pacífico a través de los bosques nublados de los Andes, los bosques secos de las tierras bajas del noroeste, hasta las praderas de los llanos y la hasta selva amazónica, los hábitats colombianos albergan la fauna de mariposas más rica del mundo (Ospina-López y Reinoso-Flórez, 2009).

Colombia es el tercer país a nivel mundial en cuanto a diversidad de mariposas diurnas, con cerca de 3, 274 especies descritas hasta el momento, de las cuales aproximadamente 350 son endémicas (Andrade et al., 2007). Esta gran diversidad es el producto del posicionamiento geográfico, la compleja topografía, el mosaico de climas, suelos, y la fisiografía e historia geológica (Amat et al., 1999) del territorio en el que se encuentra el país, el cual ocupa una posición predilecta sobre el límite tropical y constituye una zona de intercambio

de especies entre el norte y el sur del continente americano (Ospina-López y Reinoso-Flórez, 2009).

- Mariposas como indicadoras de la calidad del hábitat. Las mariposas son insectos de gran importancia en los ecosistemas por las funciones ecológicas que cumplen (Brown, 1997). Además, son consideradas como un grupo indicador confiable para estudios de inventario o monitoreo de biodiversidad, conservación y endemismos, debido a su sensibilidad a los cambios de temperatura, humedad, radiación solar y disminución de plantas hospederas y alimenticias (Kremen et al., 1993; Kremen, 1994), características que las convierte en una herramienta importante para hacer predicciones y/o evaluar el grado de intervención o conservación en el que se encuentra un ecosistema, y poder así diseñar estrategias a través de programas de conservación que mitiguen el impacto generado por las diferentes actividades antrópicas.
- Mariposas del bosque seco tropical (Bs-T) del Tolima. En países megadiversos como Colombia, la diversidad se ve reflejada en un sinnúmero de especies, en este sentido se han reportado, por ejemplo, 1,815 especies de aves, 45,000 de plantas vasculares (Andrade-C, 2002) y 3,279 especies de mariposas (Andrade-C, 2013). Esta diversidad ha sido el resultado del levantamiento de la cadena montañosa de los andes, la cual ha generado diferentes ecosistemas que incluyen páramos, bosques andinos, húmedos, bosques secos tropicales, entre otros (van der Hammen, 1974).

Sin embargo, esta biodiversidad se ha visto amenazada por las actividades antrópicas como la ganadería, la agricultura y la urbanización (Fahrig, 2003). Los bosques secos tropicales actualmente son considerados los ecosistemas con mayor grado de amenaza. Actualmente, de estos biomas sólo restan menos del 4% de la cobertura original, otro 5% está relacionado a los remanentes de bosque con cierto grado de intervención antrópica y el 90% se encuentran fuertemente fragmentados y degradados (Pizano y García, 2014).

Con respecto a su distribución estos ecosistemas pueden ser hallados en los valles interandinos, algunos fragmentos aislados hacia el sur de Colombia y en mayor extensión en el Caribe colombiano (Pizano y García, 2014). Los bosques secos han sido definidos con base en su fisionomía, florística, precipitación y humedad (Murphy y Lugo, 1995), de forma diferente por varios autores ya que los bosques secos pueden cambiar de acuerdo a la zona geográfica donde se encuentren. El bosque seco tropical es uno de los ecosistemas más complejos e interesantes del Neotrópico, porque posee especies que se han adaptado a las fluctuaciones extremas en la temperatura y a la escasa disponibilidad del agua (Murphy y Lugo, 1986).

En el continente americano, los bosques secos tropicales se localizan sobre la zona tropical del continente, desde el Norte (México), pasando por Costa Rica,

Panamá, varias islas del Caribe y el norte de Colombia y Venezuela. Hacia el sur del continente, estas formaciones ocupan las costas del sur de Ecuador y del norte de Perú, rodeando la región semidesértica de la Catinga en Brasil hasta el norte de Argentina, el suroccidente de Paraguay y el sur de Bolivia, donde conforman una parte del Chaco y otra del llamado bosque Chitiano (Sarmiento, 1975).

El bosque seco tropical representa 50% de las áreas boscosas en Centroamérica y 22% en Sudamérica (Murphy y Lugo, 1986). En Colombia se distribuía originalmente en las regiones de la llanura Caribe y valles interandinos de los ríos Magdalena y Cauca entre los 0 y 1000 metros de altitud y en jurisdicción de los departamentos del Valle del Cauca, Tolima, Huila, Cundinamarca, Antioquía, Sucre, Bolívar, Cesar, Magdalena, Atlántico y sur de La Guajira (IAVH, 1997), eso sin mencionar muchos enclaves pequeños de este ecosistema en el resto del país (Mendoza-C, 1999). No obstante, en la actualidad no se dispone de información exacta de la extensión de la cobertura original. Se han registrado, a través de estudios especiales, que queda menos del 4% de la cobertura original del bosque seco tropical maduro en Colombia y otro 5% está relacionado a los remanentes de Bs-T con intervención antrópica, lo que quiere decir que más del 90% de estos ecosistemas secos se encuentran intervenidos (Pizano y García 2014).

3.2.1.4. Ictiofauna.

- Generalidades y diversidad de peces en Colombia. Debido a su posición geográfica y a sus cadenas montañosas Colombia posee una enorme diversidad de especies ícticas, en total se reportan 1616, convirtiéndose en uno de los cinco países con mayor diversidad de peces en el mundo. Debido a su gran riqueza hídrica, el país es dividido en cinco regiones hidrográficas de las cuales el Amazonas es la más diversa con 764 especies, seguida del Orinoco con 715, Magdalena-Cauca con 235, Caribe con 231 y Pacifico con 128 (DoNascimiento et al., 2018).
- Peces asociados a los humedales de zonas bajas del Tolima. El departamento del Tolima se encuentra en la zona hidrográfica del Magdalena-Cauca, principal área de desarrollo social y económico del país ya que alberga aproximadamente el 80% de la población colombiana (García-Alzate et al., 2020). La diversidad de especies de peces para esta zona, representa el 14.5% de la diversidad de peces de agua dulce para Colombia, el 68% de las especies son endémicas y 75 especies están restringidas a una subcuenca o microcuenca de la misma (García-Alzate et al., 2020). Por lo que es de suma importancia el estudio y la preservación de la fauna íctica en esta zona hidrográfica.

Las 235 especies reportadas para esta zona hidrográfica, se distribuyen en siete órdenes y 33 familias. El orden Siluriformes es el más dominante con 115 especies

(49%), seguido por Characiformes con 88 especies (38%). Con relación a las familias las más diversas son Characidae con 57 especies, seguida de Trichomycteridae con 34, Loricariidae con 32 y Astroblepidae con 21 (García-Alzate et al., 2020).

La zona hidrográfica del Magdalena-Cauca tiene un total de 1.290.000 hectáreas de planicies inundables que corresponden a cerca del 10% del área total de la cuenca (Restrepo et al., 2020). Estas se ubican mayoritariamente en la parte media y baja. Estos ecosistemas de aguas con corrientes nulas o lentas, se denominan lénticos y son ecosistemas estratégicos ya que albergan una gran biodiversidad, recursos naturales.

Estos ecosistemas son de vital importancia para la fauna íctica, debido a que brindan hábitat, alimento y sitios para la reproducción y desove de especies de importancia económica como el Bocachico (*Prochilodus magadalenae*) y algunos bagres del género Pimelodus (Jiménez-Segura, 2007). En este tipo de ecosistemas es común encontrar especies pertenecientes a los órdenes, Characiformes y Blenniiformes (anteriormente conocidos como Cyprinodontiformes y Cichliformes).

- A. Characiformes. Se caracterizan por presentar escamas, línea lateral completa (algunas veces incompleta), dientes bien desarrollados, cabeza sin barbicelos y generalmente con aleta adiposa, con una amplia distribución desde Texas hasta Argentina en América y en África (Nelson, 2006). Habitan diversos ecosistemas acuáticos, como ríos, quebradas, arroyos, ciénagas, humedales, morichales entre otros.
- B. Siluriformes. Conjunto de peces comúnmente conocidos como bagres, compuesto por más de 30 familias y de aproximadamente 2, 400 especies lo cual conforma el grupo de mayor diversidad y distribución de peces dulceacuícolas a nivel mundial (Nelson, 2002). Las especies de este orden pueden alcanzar hasta los tres metros de longitud y se caracterizan externamente por no presentar escamas, cuerpo cubierto por piel o placas óseas, generalmente con cuatro barbicelos en la cabeza y el primer radio endurecido en la aleta dorsal y pectoral (Nelson, 2002).
- C. Blenniiformes anteriormente conocidos como Cyprinodontiformes. Se caracterizan por presentar tallas pequeñas menores a 15 cm, aletas sin espinas, con dimorfismo sexual y una alta capacidad para tolerar ecosistemas intervenidos con altas cargas de materia orgánica y bajas condiciones de oxígeno (Ponce de León y Rodríguez, 2010; Viera et al., 2011).
- D. Blenniiformes anteriormente conocidos Cichliformes. Se distribuyen en casi todos los ambientes dulceacuícolas tropicales y los cuales son extremadamente

diversos en su morfología ya que pueden habitar ecosistemas de corrientes lentas y rápidas. Se caracterizan por presentar cuerpos altos comprimidos lateralmente, espinas en las aletas, línea lateral interrumpida y de carecer de aleta adiposa. Presentan dimorfismo sexual, cuidado parental, mediante incubación, y algunas especies son capaces de elaborar nidos (Nelson, 2006). Algunas especies de este grupo son muy frecuentes en humedales y sistemas lénticos debido a su interés pesquero, como es el caso de la mojarra roja Oreochromis sp y la mojarra plateada o tilapia del Nilo Oreochromis niloticus.

En el departamento del Tolima se han realizado estudios de la diversidad, distribución y algunos aspectos ecológicos de la ictiofauna en diversas cuencas del departamento, como, por ejemplo: Coello, Prado, Lagunillas, Totare, Gualí entre otros. Algunos orientados al levantamiento de información primaria como los planes de ordenamiento de cuencas y otros orientados a ecología aplicada, producto de tesis de pregrado y posgrado de la Universidad del Tolima (Albornoz Garzón y Conde-Saldaña, 2014; Briñez-Vásquez, 2004; Castro-Roa, 2006; García-Melo, 2005; López-Delgado, 2013; Montoya-Ospina et al., 2018; Villa-Navarro y Losada-Prado, 1999; Villa-Navarro y Losada-Prado, 2004; Zúñiga-Upegui et al., 2005).

Adicionalmente, el Grupo de Investigación en Zoología de la Universidad del Tolima desde el año 2010 ha venido realizando la caracterización y planes de manejo ambiental de los humedales de zonas altas y bajas en diferentes municipios del departamento del Tolima, hasta la fecha se reportan aproximadamente 27 humedales caracterizados (Grupo de Investigación en Zoología [GIZ], 2010; 2013-2015; 2016; 2017; 2019; 2021). Debido a que estos ecosistemas son de vital importancia y brindan varios servicios ecosistémicos, es importante monitorear el estado de las comunidades, debido al cambio del uso de suelo que afecta negativamente la biodiversidad de la zona hidrográfica del Magdalena-Cauca.

3.2.1.5. Herpetofauna.

• Generalidades y diversidad de herpetos (anfibios y reptiles) en Colombia. La Herpetofauna comprende el estudio ecológico, comportamental, taxonómico y genético de anfibios y reptiles, y aunque estos dos clados no comparten un origen evolutivo único, se han vinculado artificialmente ya que comparten algunas relaciones de hábitat y comportamiento, pero fisiológica y anatómicamente difieren (Vidal y Labra, 2008).

Los anfibios son vertebrados con dos etapas de vida, una ligada al agua, en sus estadios larvarios y otra adaptada a hábitos terrestre en sus fases maduras, por medio del proceso denominado metamorfosis, ampliando así las oportunidades reproductivas, alimenticias, sensoriales y territoriales (Pough et al., 2004). Las especies que conforman este grupo se caracterizan por presentar respiración

cutánea, lo cual les permite realizar intercambio gaseoso con el medio, requiriendo niveles adecuados de temperatura y humedad, lo que les permite y otorga beneficios en conductas como locomoción, cortejo y reproducción (Wells, 1977; Gerhardt, 1994).

Se caracterizan por habitar diferentes ambientes y ecosistemas, desde bosque seco, humedales, selvas, hasta llegar a paramo, sus características fisiológicas y anatómicas les permite mostrar cambios en las poblaciones de acuerdo al grado de intervención en el ambiente, lo que les otorga ser considerados a estos organismos como indicadores del bienestar de un ecosistema, al ser dependientes de la calidad del agua, las coberturas vegetales, los niveles de biomasa (hojarasca) y la oferta alimenticia presente (Heyer et al., 1994).

La clase Amphibia se agrupa en tres grandes órdenes: Anura, Caudata, y Gymnophiona. Dentro de este grupo el orden Anura, está conformado por los llamados sapos y ranas, los cuales se caracterizan por carecer de cola y presentar extremidades traseras muy desarrolladas (Ročková y Roček, 2005). Caudata, esta constituidos por las denominadas salamandras, las cuales poseen un cuerpo alargado con cuatro extremidades cortas y presencia de cola, son organismos susceptibles a cambios bruscos en el ambiente, y dependen fuertemente a las variaciones de temperatura y humedad (Cruz et al., 2016).

El orden Gymnophiona, es un grupo con hábitos principalmente fosoriales, son animales alargados carentes de extremidades, pero presentan un sistema de detección a través tentáculos dispuestos lateralmente en el rostro, que les permite encontrar alimento debajo de la tierra (Lynch, 1999). A nivel mundial se registran potencialmente 8, 360 especies de anfibios, en términos de riqueza el orden Anura contiene 7, 381 especies, seguido por el orden Caudata con 766 especies y Gymnophiona 213 especies, siendo las áreas con mayor diversidad y riqueza en el América del Sur y África del Oeste tropical (Frost, 2019). Se ha identificado que, a nivel latinoamericano, Brasil presenta la mayor diversidad con 1, 220 especies, seguido por Colombia con aproximadamente 853 especies, descritas hasta la fecha. El departamento del Tolima registra 85 especies de ranas y sapos (Anura), cinco de cecilias o ciegas (Gymnophiona) y tres salamandras (urodela) (Clavijo-Garzón et al., 2018).

La clase Reptilia está constituida por vertebrados ectotermos, es decir dependientes de la temperatura ambiental para regular su metabolismo. Se caracteriza por presentar un desarrollo que se encuentra ligado a huevos con cáscara verdadera, lo que les confiere registrar especies ovíparas, ovivíparas y vivíparas (Packard et al., 1977), dentro de las características más importantes se tiene, piel cubierta de escamas, función fisiológica que les permite protegerse de las condiciones adversas del ambiente, también les permite establecer una impermeabilidad y resistencia a ecosistemas extremos, se caracterizan por mudas periódicas de su piel con respecto a la tasa de crecimiento, lo que les permite la eliminación de toxinas. Sus adaptaciones fisiológicas les permiten

habitar distintos ambientes, se encuentran condicionados por la oferta de alimento y recursos hídricos, algunos grupos poseen estructuras especializadas para la inyección de sustancias químicas destinadas a la protección y depredación (Campbell y Lamar, 2004).

Los reptiles en Colombia se están distribuidos en tres grupos: Los órdenes que mejor están representados por Crocodylia (caimanes y cocodrilos), Testudines (Tortugas) y Squamata (lagartos y serpientes), los cuales poseen diversas adaptaciones morfológicas especializadas en la detección y captura de su alimento, así como una amplia motilidad (Sánchez et al., 1995). Para la clase Reptilia se han descrito aproximadamente ~11, 570 especies a nivel mundial, Colombia ocupa los países con mayor riqueza potencial de 635 especies, seguido de 593 especies, de Squamata, 36 especies, Testudines y seis de Crocodylia, este último presenta tres especies, que están al borde de la extinción (Galvis-Rizo et al., 2015; Uetz et al., 2019).

• Herpetos asociados a los humedales de zonas bajas del Tolima. Llano-Mejía et al. (2010), registra para el Tolima 60 especies, de serpientes, 36 lagartos (squamata), cuatro tortugas (testudine) y dos caimanes (crocodilia). En la actualidad se tiene un total de 7, 212 especies de anfibios y 8, 492 especies de reptiles evaluados dentro de las distintas categorías de establecidas por la Unión Internacional para la Conservación de la Naturaleza, (IUCN, 2022), reportan alrededor de 2, 442 especies de anfibios y 1, 458 reptiles especies en algún estado de amenaza (CR, EN y VU), a nivel mundial (IUCN, 2018).

Además de las especies que están catalogadas en algún grado de amenaza es importante considerar que la herpetofauna en el Tolima, se encuentra bajo una fuerte presión, a causa de la cacería, la reducción, la destrucción de los bosques. Las principales amenazas que afrontan están dirigidos a cambios en el ambiente, la aparición de especies invasoras, el aumento de la temperatura, la fragmentación de los bosques, la propagación de patógenos como el hongo Batrachochytrium dendrobatidis, que atenta a los anfibios alterando su capacidad de respiración cutánea y el calentamiento global (Rueda-Almoacid et al., 2004; Angulo et al., 2006).

De esta forma se tiene a los herpetos como dos de los grupos de vertebrados más amenazados por el empleo en rituales culturales y sacrificios por las comunidades, lo que conllevan a la reducción poblacional de muchos grupos, principalmente las serpientes (Rueda-Almonacid *et al.*, 2004).

Son pocos los trabajos dirigidos al conocimiento de la herpetofauna asociada a humedales en el departamento del Tolima o realizados sobre esta zona de vida en el país. Registros como los desarrollados por Clavijo-Garzón et al. (2018), Reinoso-Flórez et al. (2017) y SiB (2022) han permitido vislumbrar la capacidad de los humedales como reservorios de biodiversidad, y una alta representatividad producto de su posición geográfica del territorio tolimense y de la amplia

disponibilidad de hábitats que poseen las tierras bajas y secas donde se encuentran los humedales en el departamento (Cortés-Gómez et al., 2015).

3.2.1.6. Avifauna.

• Generalidades y diversidad de aves en Colombia. Las aves constituyen uno de los grupos vertebrados más diversos, comprendiendo cerca de 11,000 especies a nivel mundial y entre 1954 (ACO, 2020) y 1999 (SiB, 2022) especies a nivel nacional (pertenecientes a 31 órdenes, 94 familias, 741 géneros y más de 3000 subespecies), de las cuales 1887 cuentan con registros en el territorio continental, mientras 17 han sido reportadas únicamente para la región insular (Donegan et al., 2013; Donegan et al., 2014; Donegan et al., 2015; Verhelst-Montenegro y Salaman, 2015; Avendaño et al., 2017).

Pese a que mundialmente el país es considerado el más diverso en avifauna (SiB, 2022) y que este grupo taxonómico cumple importantes roles ecológicos como controladoras de insectos, dispersoras de semillas, polinizadoras, entre otras funciones (Molina-Martínez, 2002), se estima que el 7-9% de las especies están inscritas en alguna categoría de amenaza (Renjifo et al., 2002; Andrade-C., 2011; SiB, 2022) y poco más del 4.5% del total de especies presentes en el país son endémicas (Avendaño et al., 2017). Así, según los reportes del Sistemas de información sobre biodiversidad en Colombia (SiB, 2022) y con base en los datos de Renjifo et al. (2014), obtenidos a partir de la evaluación de 118 especies registradas en los bosques húmedos de los Andes y la costa Pacífica, se reporta que 68 (actualmente 133) de ellas se encuentran en diferentes categorías de amenaza de las cuales seis se encuentran en peligro crítico (16 según el SiB), 26 en peligro (54 según el SiB) y 36 vulnerables (63 según el SiB).

• Las aves como indicadoras de la calidad del hábitat. Sin lugar a duda, las aves constituyen el grupo taxonómico más conocido y carismático en contraste con cualquier otro (Green y Figuerola, 2003), por lo cual se consideran uno de los principales objetos de estudio a la hora de estimular el interés hacia la conservación de la biodiversidad e implementar políticas de conservación y manejo de ecosistemas y hábitats (Renjifo et al., 2002; Villareal et al., 2004; Osorio-Huamaní, 2014).

La importancia de este grupo no solo radica en su carácter carismático, sino también se basa en el hecho de que proporciona un medio rápido, confiable y replicable de evaluación del estado de la mayoría de hábitats terrestres y acuáticos, facilitando la realización de comparaciones a lo largo de gradientes climáticos y ecológicos en cuanto a su riqueza, recambio y abundancia de especies (Osorio-Huamaní, 2014). Además, proporciona un medio rápido, confiable y replicable para monitorear y conocer de forma indirecta algunas características de los ecosistemas que habitan. De hecho, algunos

investigadores han encontrado que las características del paisaje influyen en la composición y abundancia de las aves, facilitando o impidiendo el mantenimiento de algunas especies (Gillespie y Walter, 2001).

Además, este grupo posee una serie de características que le hace ideal para inventariar gran parte de la comunidad con un buen grado de certeza (Osorio-Huamaní, 2014). Por ejemplo, presentan comportamientos llamativos (diurnas, muy activas y altamente vocales), su identificación es rápida y confiable, son fácil de detectar durante casi todo el año-excepto aquellas especies que presentan movimientos locales o migraciones-, cuentan con gran cantidad de información consignada en libros y publicaciones científicas, presentan un gran diversidad y especialización ecológica y exhiben diferentes grados de sensibilidad a perturbaciones ambientales (Villareal et al., 2004).

Pese a estas bondades, solo algunas especies pueden funcionar como indicadoras de condiciones biológicas particulares del hábitat, ya que "no necesariamente las aves pueden reflejar la salud de otros taxones que viven en el mismo hábitat" (Ramírez, 2000; Gregory, 2006 citado en Villegas y Garitano, 2008, p. 149), y "pueden tener respuestas diferenciales a los disturbios en relación a otros grupos de organismos" (Lindenmayer, 1999; Milesi et al., 2002 citados en Villegas y Garitano, 2008, p. 149). Así mismo, Green y Figuerola (2003) plantean que a pesar de que la idea de las aves como "paraguas protectores de la diversidad global" ha sido ampliamente extendida, no ha sido apoyada por los análisis a escala nacional, y la distribución de los "hotspots" de diversidad para aves es importante en sí misma pero no se encuentra justificada por la diversidad de otros grupos.

En contraste, autores como Niemelä (2000), Becker (2003), Estrada-Guerrero y Soler-Tovar (2014), Echevarria (2018), entre otros, han mencionado que este grupo funciona como un buen indicador de la calidad ambiental, gracias a que responde a través de aspectos cualitativos (problemas reproductivos, adelgazamiento de la cáscara de los huevos, muerte, entre otros) y cuantitativos (cambios en la riqueza, diversidad y abundancia de especies) a los distintos cambios que puede sufrir su hábitat como producto de la degradación, marcando además de manera eficiente una pauta para establecer las acciones y decisiones a tomar en caso de que ocurran cambios drásticos en ellos.

En síntesis, el monitoreo de aves es una herramienta útil a la hora de evaluar el impacto de las acciones humanas y tomar decisiones sobre el manejo de los ecosistemas, siempre y cuando se realice de la mano con el seguimiento de otros grupos taxonómicos (fauna y flora) que puedan robustecer la información obtenida.

• Aves asociadas a los humedales de zonas bajas del Tolima. La alta diversidad de aves asociada a los humedales y el considerable número de linajes

endémicos en algunos de ellos, son reflejo de una larga asociación entre la avifauna y estos ecosistemas (Andrade, 1998 citado por Parra, 2014). El uso de este ecosistema por parte de la avifauna se hace evidente con el carácter residencial permanente o temporal que muestran las aves acuáticas (Castellanos, 2006) en el país, de modo que algunas especies han desarrollado adaptaciones morfológicas, fisiológicas y etológicas para hacer un uso más eficiente de los recursos (refugio y alimento).

Sin embargo, gracias a su mayor flexibilidad, otras tantas especies emplean estos hábitats durante parte del año o para cubrir determinada etapa de su ciclo anual (nidificación, cría o muda del plumaje) (Blanco, 1999). En este sentido, no todas las especies de aves que utilizan humedales tienen una preferencia particular por ellos, y en realidad se asocian al ecosistema en gran parte influenciadas por factores físicos como el área del humedal, la calidad del agua, la vegetación circundante, el grado de aislamiento o el contexto del paisaje donde se encuentran inmersos (Green y Figuerola, 2003; Briggs et al., 1997; Rosselli y Stiles, 2012; Quesnelle et al., 2013 citados por Parra, 2014).

Así mismo, las aves registradas dentro o en inmediaciones a humedales hacen parte de sistemas conectados con procesos y funciones ecosistémicas, por lo que es usual que su diversidad y abundancia aumente con la proximidad a otros humedales, así mismo que los humedales grandes alberguen mayor número de especies de aves respecto a las encontradas en sitios más pequeños las cuales se esperan que sean las especies más abundantes y ubicuas (Elmberg et al., 1994).

Hilty y Brown (2001) reportan para Colombia 256 especies de aves asociadas a cuerpos de aguas agrupadas en 12 órdenes taxonómicos (Hilty y Brown, 2001; Salaman, 2009), de las cuales la mayor parte pertenecen a grupos considerados como acuáticos (Charadriiformes, Ciconiiformes, Gruiformes y Anseriformes), y encontrando otros órdenes que normalmente no se asocian con estos ecosistemas como varias familias de Passeriformes (Furnariidae, Tyrannidae, Hirundinidae, Cinclidae, Emberizidae), Cuculiformes y Falconiformes.

Para los humedales de zonas bajas del Tolima, Pacheco-Vargas et al., 2018 registraron en 13 humedales un total de 147 especies de aves, distribuidas en 44 familias y 18 órdenes, entre las cuales se destacan dos especies endémicas, siete especies casi-endémicas una especie de interés (especies que tienen entre el 40-49% de su distribución en Colombia según Chaparro-Herrera et al., 2013), siete especies migratorias, una especie casi-amenazada (IUCN), una especie dentro del apéndice III de la CITES y 20 especies dentro del apéndice II. Los autores citan que la presencia de diferentes hábitats influye en la composición y abundancia de las aves (Cárdenas et al., 2003), así como el área del espejo de agua, la profundidad y la presencia de diferentes hábitats a su alrededor (Elmberg et al., 1994; Green, 1996; Ntiamoa-Baidu et al., 1998).

3.2.1.7. Mastofauna.

• Generalidades de los mamíferos y diversidad en Colombia. Los mamíferos representan la clase más pequeña de vertebrados terrestres y comprenden aproximadamente 6, 000 especies conocidas (Patterson, 2016). A pesar de su modesto número, los mamíferos se encuentran en todos los continentes, océanos y biomas. Como grupo, van desde las profundidades del océano hasta las cimas de las montañas, habitan en el agua, bajo tierra, en la superficie terrestre, en los árboles y algunos incluso pueden volar (Macdonald, 2009).

En número reducido, los mamíferos ejercen efectos de gran alcance en los ecosistemas donde habitan y pueden servir como arquitectos del paisaje (Wright et al., 2002; Sukumar, 2003) o son importantes reguladores en las cascadas tróficas (Terborgh, 1988; Estes et al., 1998), lo que les permite tener extensas distribuciones, rangos de adaptación y efectos ecológicos importantes; entre estas características tenemos las señales de identidad, las cuales los primeros mamíferos tenían dependencia del oído y el olfato que era funcional para guiar sus actividades principalmente nocturnas (Ji et al., 2009; Buck, 2004), lo que llevó a estas modalidades sensoriales a heredarse y predominar en los mamíferos modernos (Patterson, 2016), estas características les han servido en una variedad de contextos: como lo es buscar recursos (Alimento), detectar depredadores y, junto con una gran cantidad de secreciones glandulares que se producen y expresan de diversas formas son utilizadas para la comunicación y reproducción intraespecífica (Eisenberg y Kleiman, 1972; Doty, 1986).

Cuerpos cubiertos de pelo es otro sello distintivo de los mamíferos, lo que les proporciona a varios grupos de ellos ser utilizado para el aislamiento, camuflaje, un medio de comunicación y un mediador de sensibilidad del tacto, particularmente a través de las vibrisas sensoriales ubicadas en la cara y las extremidades (Noback, 1951). A diferencia de la mayoría de los otros vertebrados, los dientes de los mamíferos están estructural y funcionalmente diversificados: de adelante hacia atrás, posee incisivos mordaces, caninos punzantes y desgarradores, premolares y molares trituradores y cortadores (Stock et al., 1997). Esta variedad en su dentición y caracteres craneales, ha permitido una diversificación en sus funciones para utilizar eficientemente una amplia gama de dietas (Hirakawa, 2001; Feldhamer et al., 2007; Ley et al., 2008).

Los estudios realizados en el Neotrópico han demostrado que los órdenes Chiroptera y Rodentia son más numerosos que otros grupos taxonómicos de mamíferos (Medellín et al., 2000; Bracamonte, 2011; Díaz et al., 2021), y son los que poseen la mayor variedad de hábitos alimentarios, siendo la dieta la responsable de su diversidad, complejidad morfológica, fisiológica y ecológica que estos presentan (Wright et al., 2000). Colombia ocupa la sexta posición mundial en términos de biodiversidad de mamíferos y el cuarto en el continente americano, con 543 especies, pertenecientes a 13 órdenes, 50 familias, 214

géneros y 62 especies endémicas que equivalen a 11.4% (Ramírez-Chaves et al., 2021).

• Los mamíferos como indicadores de la calidad del hábitat. El papel funcional que juegan los mamíferos se convierte en un componente esencial de la dinámica de los humedales porque contribuyen al mantenimiento de la estabilidad ambiental a través de servicios de provisión y regulación del ecosistema, como el control de plagas de insectos, la polinización, la dispersión de semillas y la producción de guano como fertilizante vegetal, la carnivoría, herbivoría entre otros (García-Herrera et al., 2019). Estos son mecanismos esenciales para la dinámica de las áreas boscosas o cultivadas e indicadores del estado de salud de los humedales y bosques aledaños (Ramírez-Pulido et al., 2005; Millennium Ecosystem Assessment [MEA], 2005; Van Toor et al., 2019; García-Herrera et al., 2020).

En este sentido, al diferenciar los mamíferos por los gremios tróficos se observa su importante papel en la dispersión de semillas, polinización, redistribución de nutrientes y controladores de poblaciones de insectos (Clare et al., 2009; McCracken et al., 2012; García-Herrera et al., 2015; Maas et al., 2015). Sin embargo, las actividades humanas amenazan a muchos grupos de mamíferos, tanto directamente por la pérdida de hábitat, la fragmentación y la persecución de muchos mamíferos terrestres, como por la contaminación y la mortalidad accidental, especialmente entre los mamíferos marinos (Schipper et al., 2008).

• Mamíferos a los humedales de zonas bajas del Tolima. El Bs-T ha sido definido como un bioma que se presenta principalmente en tierras bajas (Dirzo et al., 2011), caracterizado por que contienen una alta diversidad beta y numerosas especies endémicas (Prieto-Torres et al., 2019). Estos biomas actualmente se encuentran sometidos a fuertes presiones antrópicas que amenazan su biodiversidad e integridad ecológica (González-M. et al., 2018).

Dentro del Bs-T existen varios subsistemas ecológicos entre los que se encuentran los humedales, los cuales brindan una amplia gama de servicios ecosistémicos, incluido el mantenimiento de la biodiversidad, la calidad del agua y el suministro de alimentos (Mitsch y Gosselink, 2015). Todos estos servicios son cruciales para el reconocimiento, manejo integrado y conservación en áreas prioritarias, a partir del desarrollo de planes o programas de conservación y educación ambiental (Grobicki et al., 2016).

El mantenimiento de estos servicios ecosistémicos depende de una variedad de procesos físicos, químicos y biológicos, incluidos los que ejercen los mamíferos a través de la depredación, la herbivoría (Ramos-Pereira et al., 2009) control de insectos (Ramírez-Fráncel et al., 2021), dispersión de semillas (García-Herrera et al., 2020) y especies que son indicadoras de calidad ambiental (Michel-Vargas

et al., 2019), endémicas y amenazadas que deben ser evaluadas en proyectos ambientales (Patiño-Guío, 2014), así como otras especies que están listadas en acuerdos internacionales como la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES), que necesitan contar con un plan adecuado para su gestión y vigilancia.

Actualmente la información sobre la diversidad y la dinámica ecológica de las poblaciones de mamíferos asociadas a los humedales de Bs-T en el departamento del Tolima sigue estando incompleta, destacándose la falta de estos estudios, en aras de actualizar el conocimiento de este grupo se siguen haciendo esfuerzos notables en identificar, conocer y conservar la diversidad y dinámica de las poblaciones de mamíferos asociados a los humedales en el departamento del Tolima. Por lo cual este estudio tiene como objetivo realizar la caracterización de la comunidad de mamíferos asociados al humedal La Moya de Enrique en el municipio de Ambalema del departamento del Tolima.

En la evaluación de los servicios ecosistémicos que los mamíferos prestan o se encuentran asociados a los humedales, se reportan los estudios realizados por el Grupo de Investigación en Zoología (GIZ) en el 2013, 2015 y 2016, en el que se registró nutria de río (Lontra longicaudis), un mamífero acuático distribuido ampliamente en Colombia, pero del cual se conoce muy poco. Colombia es conocida por su importante riqueza de especies a lo largo del territorio nacional. Sin embargo, el nivel de conocimiento que tenemos de ellas es aún precario, a pesar del acelerado deterioro de los ecosistemas naturales, que se convierte actualmente en la principal amenaza para este grupo. La situación más preocupante la enfrenta sin duda las especies asociadas a ecosistemas acuáticos, donde los procesos de contaminación y desecación están teniendo efectos negativos (Trujillo y Arcila, 2006).

Posteriormente, estudios similares en el 2015 y 2016, incluyen a la lista de los registros asociados a los humedales de las zonas bajas, varias especies de murciélagos frugívoras, polinívoros e insectívoras los cuales juegan un papel funcional importante porque se convierte en un componente esencial de la dinámica de los bosques y humedales neotropicales, ya que contribuyen al mantenimiento de la estabilidad ambiental a través de servicios de provisión y regulación del ecosistema, como el control de plagas de insectos, la polinización, la dispersión de semillas y la producción de guano como fertilizante vegetal, siendo estos mecanismos esenciales para la dinámica de áreas boscosas o cultivadas e indicadores del estado de salud de los bosques (Kunz et al., 2011; Melathopoulos et al., 2015; MEA, 2005; Ramírez-Fráncel et al., 2021; Van Toor et al., 2019).

Asimismo, García-Herrera et al. (2020), realizan un estudio en zonas de humedales donde se concluye que, al cuantificar la diversidad funcional en las comunidades naturales, los investigadores obtienen una comprensión más profunda de la importancia de las especies para los procesos de los ecosistemas;

esto puede influir en cómo se priorizan las áreas para la conservación, siendo los humedales una preocupación especial, y que al contar con información sobre especies de importancia ecológica es fundamental para un manejo apropiado de esta fauna y promover su conservación, que a menudo está en conflicto con el hombre (Ramírez-Fráncel et al., 2021).

3.2.2. Metodología.

3.2.2.1. Zooplancton.

• **Métodos de campo**. Se utilizó una red de malla fina con tamaño de poro definido para zooplancton de 55 µ, que permiten observar de manera cualitativa las comunidades de plancton existentes en la zona, con la red los organismos se obtienen por filtración y la selección se realiza según sea el tamaño del poro (Figura 3-5).

La red arrojadiza consta de un tronco con un diámetro de aproximadamente 25 cm y una longitud de un metro, el poro de la red es de 25 μ y un vaso receptor de un litro de capacidad. La red se mantiene de manera subsuperficial por un tiempo de cinco minutos y a una velocidad constante y arrastres lineales (Figura 3-5), en total en el humedal se hicieron tres arrastres en áreas distintas (Borde 1, Borde 2 y Centro).

Figura 3-5. Método de muestreo utilizado en la colecta de zooplancton en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

Las muestras fueron depositadas en frascos de 500 ml y preservadas con formol buferizado al 10%. Adicionalmente, se elaboró una ficha de campo en donde se registraron los datos de la localidad y del hábitat de la zona muestreada, además cada una de las estaciones fue descrita y georeferenciada con GPS marca GARMIN-60CSx.

• **Métodos de laboratorio.** Se realizó la determinación y conteo de plancton con la ayuda de un microscopio óptico Motic BA-210, usando la cámara de conteo Sedgwick-Rafter (SR), que limita el área y volumen, permitiendo calcular las densidades poblacionales después de un período de asentamiento considerable, mediante un conteo en bandas. Finalmente, la densidad de células por unidad de área será calculada siguiendo la fórmula (APHA, 2012; Ramírez, 2000):

Organismos/mm² =
$$\frac{N \times A_t \times V_t}{A_c \times V_s \times A_s}$$

Donde: N= Número de organismos contados; At= Área total de la cámara (mm²); Vt= Volumen total de la muestra en suspensión; Ac= Área contada (bandas o campos) (mm²); Vs= Volumen usado en la cámara (ml); As= Área del sustrato o superficie raspada (mm²).

Para el conteo se analizaron 30 campos en un ml de cada una de las muestras colectadas. Los organismos fueron observados bajo un microscopio óptico Motic BA-210, con el objetivo de 40X, y se obtuvo la medida de la densidad de organismos presentada como individuos por metro cuadrado (m²), para ello se utilizó el método de conteo de bandas por campos aleatorios descrito por APHA (2012); Ramírez, (2000).

La identificación taxonómica de las algas se hizo siguiendo las claves de Yacubson (1969), Prescott (1973), Needham y Needham (1978), Streble y Krauter (1987), Lopretto y Tell (1995), Ramírez (2000), y Bellinger y Sigee (2010), e ilustraciones de algas en el libro de APHA y AWWA (1999). Además, se soportó la determinación de las algas con la base de datos electrónica.

3.2.2.2. Macroinvertebrados.

• **Métodos de campo.** Una vez ubicada la estación de muestreo, se realizó la recolección de los macroinvertebrados acuáticos asociados al cuerpo de agua, para lo cual se utilizó una metodología dirigida hacia la fauna asociada a macrófitas y otra dirigida hacia la fauna béntica.

A. Recolección de fauna asociada a macrófitas acuáticas. Se extrajo la vegetación macrófita flotante y emergente ubicada al interior de un cuadrante de 0.25 m² (Figura 3-6), posteriormente se realizó el lavado del material (raíces, troncos y hojas sumergidas) haciendo pasar el agua que arrastró a los organismos a través de un tamiz de 0.3 mm, de manera que los organismos y el material particulado quedaron atrapados allí para obtener la muestra final.

Figura 3-6. Cuadrante de macrófitas para la recolección de macroinvertebrados acuáticos en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

B. Recolección de fauna béntica. Los macroinvertebrados bentónicos se recolectaron a partir del material sedimentado en el fondo del cuerpo de agua, de cual se extrajeron 2.5 litros que fueron lavados en un juego de tamices con un orden de aperturas de dos, uno, 0.5 y 0.3 mm (Figura 3-7).

El material obtenido a partir de los dos procesos se almacenó en frascos plásticos, se fijó con alcohol al 70% y se etiquetó con los respectivos datos de recolección. Adicional a esto, se diligenció una ficha de campo por estación de muestreo, en la que se incluyen datos adicionales relacionados con variables ambientales y descripción de la estación de muestreo.

• **Métodos de laboratorio**. Se realizó el procesamiento de muestras que incluyó la limpieza y separación de los organismos en alcohol al 70%, los cuales se determinaron hasta el nivel taxonómico de familia usando un estereomicroscopio Olympus SZ40. Para la determinación taxonómica se emplearon las claves y descripciones de McCafferty (1981), Machado (1989), Needham y Needham (1991), Rosemberg y Resh (1993), Lopretto y Tell (1995),

Roldán (1996, 2003), Muñoz-Quesada (2004), Pointier et al. (2005), Merrit y Cummins (2008), Domínguez y Fernández (2009). Finalmente, los organismos se organizaron siguiendo estándares nacionales y se ingresaron a la Colección Zoológica de la Universidad del Tolima sección Macroinvertebrados Acuáticos (CZUT-Ma).

Figura 3-7. Lavado de sedimentos en tamiz para la recolección de macroinvertebrados acuáticos en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

3.2.2.3. Lepidópteros.

- **Métodos de campo.** De acuerdo a la metodología propuesta por Fagua (2001), los ejemplares fueron colectados con jama entomológica (red aérea) (Figura 3-8) la cual posee un diámetro de 0.4 metros y una profundidad de 1.20 metros; los organismos fueron sacrificados por presión digital al tórax y guardados en bolsas de papel milano blanco para su posterior determinación. Por cada ejemplar capturado se anotó el número de captura.
- **Métodos de laboratorio.** Los ejemplares colectados fueron transportados hasta el Laboratorio del Grupo de Investigación en Zoología de la Universidad del Tolima (GIZ), donde se realizó su respectivo montaje y determinación taxonómica, contribuyendo de esta manera a la ampliación de la Colección Zoológica de Lepidópteros diurnos (CZUT-Lp) de la Universidad del Tolima. Seguidamente los ejemplares fueron montados y etiquetados según las recomendaciones de De Vries (1987); Andrade *et al.* (2013). Para la

determinación se utilizaron claves e ilustraciones de revisiones taxonómicas (De Vries, 1987; De La Maza, 1987; Le Crom et al., 2002; 2004; Andrade, 2007) y se revisaron con ayuda de la guía fotográfica de Warren et al. (2013). La ordenación taxonómica de las especies según la propuesta por Lamas (2004) y Warren et al. (2013) (Figura 3-9).

Figura 3-8. Captura de ejemplares de mariposas diurnas con de red Lepidopterológicas en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

Figura 3-9. Montaje y secado del material colectado en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

• Análisis de datos. Para el análisis de datos se calculó el porcentaje de abundancia relativa (AR%) de los órdenes, familias y especies registradas en la zona de muestreo. La abundancia relativa se definió como:

Donde AR corresponde a la abundancia relativa del taxón, n1 al número de individuos capturados u observados del taxón y N al número total de individuos registrados.

3.2.2.4. Ictiofauna.

• **Métodos de campo**. Para la colecta del material biológico se evaluó un área de 100 metros de largo y ancho variable dependiendo de la disponibilidad y acceso al espejo de agua, en el humedal La Moya de Enrique solo fue posible acceder a una de las orillas debido a que al momento del muestreo el espejo de agua se había desbordado, producto de las fuertes lluvias de los días anteriores.

Se emplearon tres métodos: electropesca, red de arrastre y atarraya (Figura 3-10). La combinación de estos tres métodos permite evaluar de una manera más precisa la diversidad de la fauna íctica en los humedales. El método de electropesca es una técnica no selectiva que permite la captura de individuos de diferente tamaño produciendo un estado de electrotaxis (natación de forma obligada), electrotétano (contracción muscular) y electronarcosis (relajación muscular) facilitando su captura (Maldonado-Ocampo et al., 2005).

Este método es ampliamente usado en los cuerpos de agua andinos, Sin embargo, está influenciado por factores físicos como la temperatura, la conductividad eléctrica y la velocidad de la corriente, disminuyendo su eficacia en zonas muy profundas y con aguas quietas. Es por esto que para la evaluación de los humedales se utilizó además la red de arrastre y la atarraya (Figura 3-10Figura).

En cada punto de muestreo se realizaron tres arrastres en las orillas del humedal, comenzando en las zonas profundas en dirección hacia la orilla. Esto se realizó con una red ojo de malla de dos milímetros y 1.5 metros de altura y tres metros de longitud. Adicionalmente, se realizaron diez lances con la atarraya en cada sitio de muestreo (cuatro metros x dos metros con ojo de malla de un centímetro) (diez lances/estación).

Figura 3-10. Métodos de colecta de peces empleados en el humedal La Moya de Enrique, Ambalema-Tolima.

Electropesca

Red de arrastre

Atarraya

Fuente: GIZ (2022)

- A. Sacrificio: Los ejemplares fueron sumergidos en una solución de aceite de clavo o eugenol (17 mg/L, por diez minutos) y se cambió el agua para evitar su muerte. Los ejemplares se mantuvieron en la solución descrita anteriormente hasta que el movimiento opercular cesó, siguiendo lo propuesto por Underwood et al. (2013).
- B. Fijación: Una vez cesaron los movimientos operculares, los ejemplares se sumergieron en una solución de formol al 10%, para su transporte, evitando así la descomposición de tejidos.
- C. Transporte: Los especímenes fueron depositados en bolsas plásticas de sello hermético (Figura 3-11), con la correspondiente etiqueta de campo, y se transportaron vía terrestre en una caneca plástica hermética, hasta el Laboratorio de Investigación en Zoología de la Universidad del Tolima, en la ciudad de Ibagué. Una vez en el laboratorio, el material biológico se pasó a alcohol al 70% para su preservación final.

Figura 3-11. Transporte de material biológico colectado en el humedal La Moya de Enrique, Ambalema-Tolima.

D. Variables físicas y químicas. En cada uno de los sitios de muestreo se evaluaron la temperatura del agua, pH, conductividad eléctrica y sólidos totales con la ayuda de una sonda multiparámetro Tongbao AZ86031 (Figura 3-12).

Figura 3-12. Medición de algunas variables fisicoquímicas en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

• **Métodos de laboratorio.** Los especímenes colectados fueron determinados a nivel de especie y morfoespecies por medio de claves y descripciones (Alzate et al., 2021; Maldonado-Ocampo et al., 2005) y distribuciones geográficas (DoNascimiento et al., 2017); posteriormente fueron ingresados a la Colección Zoológica de la Universidad del Tolima-sección ictiología (CZUT-IC).

Análisis de datos.

A. Composición y abundancia de especies. Se determinó la abundancia relativa de los órdenes, familias y especies a partir del número de individuos colectados de cada especie y su relación con el número total de individuos de la muestra. Fue calculado con el fin de determinar la importancia y proporción en la cual se encuentra cada una de las especies con respecto a la comunidad.

AR= Número de individuos de cada especie en la muestra x 100

Número total de individuos en la muestra

B. Especies de interés para la conservación. Para determinar las categorías de amenaza, se tuvieron en cuenta los criterios planteados por la IUCN. Para definir estos, se realizó la búsqueda de información en la página de la IUCN y en los libros rojos disponibles para los grupos taxonómicos, en este caso el de peces dulceacuícolas de Colombia (Mojica et al., 2012) y en La Resolución 1912 de 2017 "Por la cual se establece el listado de las especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera que se encuentran en el territorio nacional, y se dictan otras disposiciones".

Adicionalmente, para determinar si alguna de las especies se encontraba en algún apéndice CITES, se realizó la búsqueda en la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres vigentes a partir del 25 de septiembre del 2012.

Adicionalmente, se determinó el estatus poblacional y los endemismos, partiendo de la definición de que estas especies presentan un rango de distribución limitado y por lo tanto, son particularmente frágiles a la alteración del hábitat. Para la determinación de estas se utilizaron los mapas de distribución de la IUCN y el listado de peces de agua dulce para Colombia (DoNascimiento et al., 2018).

3.2.2.5. Herpetofauna.

• **Métodos de campo.** La metodología de campo utilizada para la búsqueda y captura de anfibios fue la propuesta por García-González et al. (2014), que consiste en Muestreo de Encuentro Visual (MEV), en áreas con buena cobertura vegetal y de mayor grado de conservación posible, principalmente

en sitios fitotelmaticos, donde se observara permanencia constante de agua (troncos podridos, humedales); así como otros microhábitats y posibles lugares de encuentro para la herpetofauna (huecos en tierra, desagües, debajo de rocas, troncos).

Para esto se empleó la técnica de búsqueda libre, sin restricciones, por encuentro casual y auditivo (Angulo et al., 2006), en donde se buscan y detectan vocalizaciones o cantos de anuros para su captura. El muestreo tuvo una periodicidad alternada en los distintos momentos del día: en horas de la mañana, entre las 8:00 y 10:00 horas, con el fin de detectar aquellas especies de hábitos diurnos y aquellos reptiles, principalmente lagartos, que se exhiben y termorregulan. Y en la tarde-noche entre las 14:00 y las 21:00 horas, para organismos que demuestran una mayor actividad nocturna y crepuscular, como serpientes y anuros (Angulo et al., 2006), para un esfuerzo de muestreo total de 11 horas/día/hombre (Figura 3-13).

Los animales colectados fueron transportados en bolsas plásticas para su manejo y determinación. Se especificó la presencia y/o ausencia de características morfológicas así como el tipo, forma, tamaño y color de estructuras tales como glándulas, membranas timpánicas, discos y almohadillas, escudetes, pliegues, tubérculos, rebordes cutáneos, membranas interdigitales manuales y pediales, espolones y espinas humerales, los cuales fueron consignados en fichas y libretas de campo, junto con el carácter morfométrico Longitud Rostro-Cloaca (LRC), el cual fue tomado con un calibrador digital Mitutoyo de precisión 0.1 mm.

Se realizó el registro fotográfico respectivo, georreferenciación y anotaciones correspondientes a su coloración en vida, características morfológicas y morfométricas, así como aspectos comportamentales, climáticos y ecológicos al momento de la captura, con la finalidad contribuir a su determinación y confirmación taxonómica buscando llegar hasta la mínima categoría posible (Angulo et al., 2006).

Los individuos seleccionados fueron sacrificados mediante técnica de punción cardíaca con Roxicaina al 2% para reptiles y animales de tamaño considerable. En el caso de los anfibios, dada su capacidad de respiración cutánea, el sacrificio se realizó empleando *Garhocaína Benzocaina* al 20%, hasta evidenciar inmovilidad y disminución total de pulsaciones. Se tomaron muestras de tejido muscular, cardíaco o hepático, destinado a futuras investigaciones moleculares. Los organismos sacrificados fueron dispuestos en bandejas plásticas con papel filtro y absorbente impregnados con formol al 10%, acomodando los especímenes en la mejor posición natural con el fin de evaluar sus caracteres morfológicos apropiadamente (Heyer et al., 1994; Angulo et al., 2006) (Figura 3-13).

Figura 3-13. Metodología de campo y especímenes herpetológicos colectados en el humedal La Moya de Enrique, Ambalema-Tolima.

- Métodos de laboratorio. Los individuos colectados fueron transportados al laboratorio del Grupo de investigación en Zoología (GIZ) de la Universidad del Tolima, mantenidos en formol al 10% hasta pasado el tiempo de fijación, cinco días para reptiles y diez días para los anfibios, se procedió a eliminar el fijador, con base en el protocolo modificado de Heyer (1994) a través de lavados de disolución de alcohol y almacenados en frascos de vidrio con alcohol al 70%. Para la confirmación taxonómica de cada uno de los organismos, se emplearon descripciones, claves dicotómicas y/o publicaciones, así como la comparación diagnóstica de los individuos colectados confrontados con especímenes dispuestos en la Colección Zoológica de la Universidad del Tolima, sección anfibios y reptiles (CZUT-A; CZUT-R), para posteriormente ser ingresados en la misma (Heyer et al., 1994; Angulo et al., 2006).
- Análisis de datos. Se realizó la recopilación de información secundaria con la finalidad de conocer las especies de anfibios y reptiles potenciales para el área de estudio, a partir de artículos científicos, bases de datos de colecciones y registros técnicos realizados sobre la zona de vida, asociado al rango altitudinal, los Bs-T y Planes de manejo realizado en los humedales objeto de estudio.
- A. Composición y abundancia de especies. Para el cálculo de la abundancia relativa (%) de las especies de herpetofauna encontradas, se empleó la fórmula: AR%= (ni/N) x 100, dónde AR= Abundancia relativa; ni= Número de individuos capturados u observados; N= Número total de X capturados u observados. Para determinar la diversidad se empleó el número de especies (Riqueza) de acuerdo con el número total de individuos.

B. Especies de interés para la conservación. Para la obtención de la información sobre el estado actual de amenaza de las distintas especies, se utilizaron los datos de la Unión Internacional para la Conservación de la Naturaleza (IUCN) y el CITES, así como registros y/o publicaciones para establecer el grado de endemismo de las especies.

3.2.2.6. Avifauna.

- **Métodos de campo.** Para la determinación de la composición taxonómica de la avifauna dentro del humedal La Moya de Enrique, se realizaron muestreos mediante el uso de redes de niebla, la observación por puntos de conteo y las observaciones libres (Ralph et al., 1993; Ralph et al., 1996), con el objetivo de abarcar una mayor área circundante al humedal.
- A. Redes de niebla. En zonas cercanas al humedal se extendieron cinco redes de niebla de 2.5 metros de alto x 12 metros de largo y 36 mm de malla, según el procedimiento descrito por Ralph et al. (1996). La instalación de las redes se realizó poco antes de iniciar el muestreo (Wunderle, 1994), se abrieron en los 15 minutos siguientes al amanecer y su revisión se llevó a cabo en intervalos de 30 minutos para asegurar la integridad de los ejemplares (Consejo de Anillamiento de Aves de Norteamérica, 2003; Ralph et al., 2008). Las redes se operaron durante un día en horarios de 06:00-11:00 h y 15:00-18:00 h, para conseguir un esfuerzo de 40 horas red/muestreo (Figura 3-14).

Figura 3-14 Procedimiento de captura de aves en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

B. Conteo por puntos. Mediante el uso de binoculares (Bushnell 10x42), se contaron, identificaron y registraron las aves detectadas desde un sitio definido o "punto de conteo". Cada punto (en total cinco) abarcó una superficie circular

de 50 metros de radio y dentro de él se contaron todas las aves avistadas y escuchadas a lo largo de diez minutos, anotándolas en el orden en que fueron detectadas, junto con los datos correspondientes a localidad-número del punto, fecha, hora, coordenadas, tipo de registro (visual y/o auditivo), nombre de la especie, número de individuos, hábitat y distancia del individuo al borde del agua (Modificado de Ralph et al., 1996) (Figura 3-15).

Figura 3-15. Metodología de puntos de conteo y observaciones libres implementada en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

Una vez pasado el tiempo, se realizó un nuevo muestreo en el punto de conteo consecutivo-procurando causar el mínimo de perturbación a las aves e iniciando el conteo desde la llegada al lugar-. Con el fin de evitar contar a un mismo individuo en puntos de conteo diferentes, estos estuvieron separados entre sí a una distancia aproximada de 100 metros (Ralph et al., 1996).

Debido a que en ocasiones la identificación in situ de algunas especies resultó difícil, se procedió a ubicar el individuo mediante el método de "Búsqueda Intensiva" (Ralph et al., 1996), con el fin de fotografiarlo o grabarlo para su posterior identificación.

C. Método de determinación taxonómica. Para la determinación hasta el nivel de especie de los individuos capturados en campo y los observados en los puntos de conteo (u observaciones libres), se emplearon las guías de Hilty y Brown (2001), Restall et al. (2006), McMullan et al. (2010) y Ayerbe-Quiñones (2018). El listado general de las aves siguió la nomenclatura y el orden taxonómico sugerido por Remsen et al. (2022).

- **Métodos de laboratorio.** Los individuos colectados fueron preparados como pieles redondas acorde a la metodología convencional de las colecciones científicas propuesta por Villareal et al. (2004). A cada uno de los individuos se les registró la información correspondiente a su peso, sexo, tamaño/desarrollo gonadal, coloración de las gónadas, cantidad de grasa subcutánea, estado de la osificación del cráneo, número de colector, número de catálogo y comentarios.
- Análisis de datos. Con el fin de identificar las especies potenciales para el área de estudio, previo al muestreo en campo se realizó la revisión de información secundaria a través de la búsqueda en literatura científica (Planes de Manejo Ambiental, POMCAS, agendas ambientales, artículos y tesis con listas de especies regionales) y bases de datos de registros biológicos (ej. SiB, GBIF, iNaturalist, eBird).
- A. Composición y abundancia de especies. Se calculó la abundancia relativa (%) a nivel de órdenes, familia y especies de aves registradas, empleando la fórmula: AR%= (ni/N) x 100, dónde AR= Abundancia relativa; ni= Número de individuos capturados u observados; N= Número total de X capturados u observados.
- B. Categorías ecológicas y especies de interés para la conservación. A cada uno de los registros de aves obtenidos mediante las dos metodologías empleadas, se les consignó la categoría ecológica siguiendo las recomendaciones de Stiles y Bohórquez (2000).

I. Especies de bosque

- a. Especies restringidas al bosque primario o poco alterado. Detectadas principal o exclusivamente en el interior o dosel de estos bosques, con frecuencias mucho más bajas en los bordes o en bosques secundarios adyacentes a los bosques primarios.
- b. Especies no restringidas al bosque primario o poco alterado. Detectadas más frecuentemente en este hábitat, pero también regularmente en los bordes, bosques secundarios, u otros hábitats arbolados cerca del bosque primario.
- II. Especies de bosque secundario o bordes de bosque, o de amplia tolerancia. Encontradas con mayor frecuencia en los bordes y bosques secundarios, pero también a veces en el bosque primario y rastrojo, hasta en potreros arbolados:

su requisito principal es la presencia de árboles y en algunos casos, la sombra debajo de ellos, más no un tipo de bosque específico.

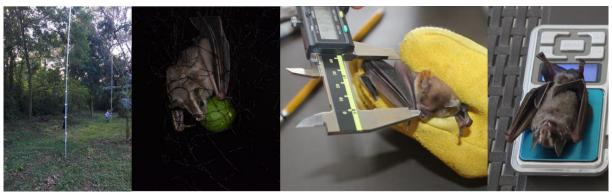
III. Especies de áreas abiertas. Encontradas principal o exclusivamente en áreas con poco o ninguna cobertura arbórea como potreros o rastrojos; en potreros o matorrales arbolados se asocian con la vegetación baja más que con los árboles; pueden encontrarse en los bordes de los bosques pero no bosque adentro.

IV. Especies acuáticas

- a. Especies asociadas a cuerpos de agua sombreadas o con la vegetación densa al borde del agua, evitando áreas abiertas o soleadas: quebradas o áreas pantanosas dentro de los bosques primarios o secundarios.
- b. Especies asociadas a cuerpos de agua sin sombra, orillas abiertas o con vegetación baja, o aparentemente indiferentes a la presencia de árboles excepto para perchas.
- V. Especies aéreas. Generalmente encontradas sobrevolando varios hábitats terrestres:
- a. Especies que requieren por lo menos parches de bosque, por ejemplo, para anidación, pero sobrevuelan una amplia gama de hábitats.
- b. Especies indiferentes a la presencia de bosque, o que prefieren áreas más abiertas.

Además, se les consignó la información correspondiente a la categoría de amenaza (Renjifo et al., 2002; Renjifo et al., 2014; IUCN, 2022), el apéndice CITES en el cual se encuentran (Roda et al., 2003), su carácter endémico, casi endémico (Chaparro-Herrera et al., 2013; Avendaño et al., 2017), migratorio o residente (Naranjo y Espinel, 2009; Naranjo et al., 2012; Avendaño et al., 2017).

3.2.2.7. Mastofauna.


• **Métodos de campo.** Se emplearon técnicas de captura, observación directa e indirecta y se realizó la clasificación de las especies registrada de acuerdo a su masa corporal, siguiendo la propuesta de Sánchez et al. (2004), en el que pequeños mamíferos terrestres son aquellos con masa<150 g, medianos entre 150 g-5 kg y grandes con una masa >5 kg (García et al., 2015). Los murciélagos capturados fueron manipulados siguiendo protocolos estandarizados para el bienestar animal (Sikes, 2016), y aprobados por el Comité de Uso de Animales bajo el permiso de recolección de especímenes avalado

por la Autoridad Nacional de Licencias Ambientales de Colombia-ANLA (resolución no. 0219, 27 de noviembre, 2018).

A. Métodos de mamíferos voladores (murciélagos). La metodología de campo utilizada para el registro del orden Chiroptera consistió en la utilización cinco redes de niebla, con un largo y ancho de 12 x 2.6 metros instalados en el sotobosque (Lim et al., 2017), fueron instaladas en los bordes de los humedales y fragmentos de bosque seco tropical. Las horas efectivas de monitoreo fueron entre las 18:00 y las 23:00, durante dos noches días consecutivos por sitio (Figura 3-16).

Después de la captura, se registró la edad, sexo y estado reproductivo de cada individuo; en el estudio solo se utilizaron machos adultos y hembras adultas no embarazadas y no lactantes. La edad de los murciélagos se estimó en función del grado de osificación de las falanges (Brunet-Rossinni y Wilkinson, 2009). El estado reproductivo se determinó examinando los pezones y palpando el abdomen para las hembras (Racey et al., 2009). Además, a cada individuo se le registró las correspondientes medidas morfológicas y morfométricas tomando 14 mediciones externas usando un calibrador digital Mitutoyo Absolute AOS (precisión 0.1 mm) (Figura 3-16), registradas en las fichas de campo. Todas las mediciones se tomaron dentro de una a dos horas después de la captura, y posteriormente se liberaron los individuos en el sitio de captura (Ramírez-Fráncel et al., 2021).

Figura 3-16. Empleo de redes de niebla para la colecta de los murciélagos asociados en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

B. Métodos de pequeños, medianos y grandes mamíferos. Se instalaron seis cámaras trampas (Figura 3-17), en senderos (típicamente <1 metros de ancho), programados para funcionar 24 horas, estas se activaban a través de un detector de movimiento y calor infrarrojo (Bushnell Trophy), este tipo de

metodología es ampliamente utilizadas para monitorear medianos y grandes mamíferos. Los sitios de trampas a lo largo de los senderos se ubicaron aproximadamente entre 40 y 60 metros (distancia en línea recta; a lo largo de los senderos), cada cámara-trampa se colocó aproximadamente a 50 cm por encima del suelo (Blake y Mosquera, 2014), sobre troncos de árboles o estacas de madera. Cada toma de las cámaras se programó con intervalos de un minuto entre un disparo y otro, asegurando que tuviera el registro del día y la hora.

Se colocaron cámaras-trampa en puntos donde era probable que transitaran los mamíferos. La ubicación de las cámaras se realizó donde se encontró evidencia de excretas y huellas o la existencia de veredas hechas por animales silvestres y caminos adyacentes y rutas transitadas sobre el camino (Blake y Mosquera, 2014). En todo momento se tomó en cuenta la información proporcionada por los habitantes de las comunidades, quienes señalaron parajes donde habían visto algunas especies, y/o sus huellas.

La vegetación fue despejada unos pocos metros frente a cada cámara, sin alterar el espacio de otra manera. Se configuraron tres cámaras para tomar cinco fotografías seguidas, con un retraso de un segundo entre las fotografías y con un tiempo mínimo entre series de fotografías de cinco minutos, Adicionalmente, tres cámaras trampa fueron programadas para realizar registros a través de videos. La fecha y la hora se estamparon automáticamente en cada fotografía. Todas las imágenes fueron etiquetadas con ubicación, cámara, fecha, hora y especie, información que fue consignada en los formatos de campo (Briones-Salas et al., 2011).

Figura 3-17. Instalación de cámaras trampa para el registro de medianos y grandes mamíferos asociados en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

C. Otras evidencias y reconocimiento de rastros. Además del monitoreo con las cámaras-trampa, en cada transecto se realizó un registro de evidencias indirectas que sugirieran la presencia de fauna, tales como huellas en el suelo (marcas de manos y patas; Figura 3-18) y excretas, en los casos en que la huella resultara lo suficientemente clara, se registraba la huella con la toma de una impresión en yeso odontológico (polvo de fraguado rápido tipo "III"), siguiendo la propuesta por Aranda (2000) para posterior determinación de la especie. Así mismo, con el fin de establecer la presencia de otros mamíferos se anotaron los registros visuales, rastros, vocalizaciones y madrigueras (Wilson y Reeder, 2005). En estos casos se registró en el formato de campo la fecha y hora del reporte del rastro, al igual que el tipo de hábitat. Adicionalmente, en cada comunidad se recopiló información de los habitantes locales mediante entrevistas y pláticas.

Los individuos seleccionados fueron sacrificados mediante técnica de punción cardíaca con Roxicaina al 2% y pasado diez minutos, alcohol 90%, para pequeños y medianos mamíferos voladores y no voladores y/o animales de tamaño considerable. Los organismos sacrificados fueron dispuestos en bandejas plásticas con papel absorbente y refrigerados para posteriormente hacer el proceso de taxidermia en el laboratorio de Zoología de la Universidad del Tolima.

Figura 3-18. Búsqueda y registro de rastros de mamíferos medianos y grandes mamíferos asociados en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

• **Métodos de laboratorio.** Los ejemplares colectados en campo fueron transportados al Laboratorio de Zoología de la Universidad del Tolima para su identificación taxonómica por medio de disecciones, extracción de cráneo, mediciones cráneodentales, claves dicotómicas especializadas y descripciones de cada especie en particular. Posteriormente fueron depositados en la Sección de Mamíferos de la Colección Zoológica (CZUT-M) (Figura 3-19) de la Universidad del Tolima (Ibagué, Colombia), mediante la preservación en seco de su piel y cráneo. Los cráneos fueron sometidos a un tratamiento de limpieza con

derméstidos (Dermestes carnivorous) para tomar las medidas morfométricas necesarias para su determinación taxonómica.

Figura 3-19. Preparación del material biológico para el ingreso a la Colección Zoológica sección Mastofauna de la Universidad del Tolima, especímenes registrados en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

- Análisis de datos. Se realizó la recopilación de información secundaria con la finalidad de conocer las especies de anfibios y reptiles potenciales para el área de estudio, a partir de artículos científicos, bases de datos de colecciones y registros técnicos realizados sobre la zona de vida, asociado al rango altitudinal, los Bs-T y Planes de manejo realizado en los humedales objeto de estudio.
- A. Composición y abundancia de especies. Para el cálculo de la abundancia relativa (%) de las especies de la mastofauna encontrada, se empleó la fórmula: AR%= (ni/N) x 100, dónde AR= Abundancia relativa; ni= Número de individuos capturados u observados; N= Número total de X capturados u observados. Para determinar la diversidad se empleó el número de especies (Riqueza) de acuerdo con el número total de individuos.
- B. Especies de interés para la conservación. Para la obtención de la información sobre el estado actual de amenaza de las distintas especies, se utilizaron los datos de la Unión Internacional para la Conservación de la Naturaleza (IUCN) y el CITES, así como registros y/o publicaciones para establecer el grado de endemismo de las especies.
- 3.2.3. Resultados-Fauna presente en el humedal. (Anexo B)

3.2.3.1. Zooplancton.

A. Composición y abundancia de especies. El zooplancton del humedal La Moya de Enrique, estuvo compuesto por tres Phyllum, tres clases, tres órdenes,

seis familias y seis géneros (Tabla 3-4). La clase que reportó mayor abundancia relativa fue Monogononta, este comportamiento es común en los ecosistemas dulceacuícolas tropicales, debido a que los rotíferos (Clase Monogononta), son organismos estrategas, oportunistas de tamaño pequeño y con ciclos de vida cortos y de amplia tolerancia a una variedad de factores ambientales (Paredes et al., 2007).

Tabla 3-4. Abundancia relativa de las familias de macroinvertebrados registrados en el humedal La Moya de Enrique, Ambalema-Tolima.

Phyllum	Clase	Orden	Familia	Género	Células/mm²	AR%
Amoebozoa	Lobosea	Arcellinida	Centropyxidae	Centropyxis	78	2.76%
Arthropoda	Maxillopoda	Harpacticoida	Indeterminado	Indeterminado	19	0.69%
		Ploimida	Brachionidae	Brachionus	272	9.66%
				Keratella	1939	68.97%
Rotifera	Monogononta		Lecanidae	Lecane	272	9.66%
			Notommatidae	Cephalodella	39	1.38%
			Trichotriidae	Trichocerca	194	6.90%

Fuente: GIZ (2013)

3.2.3.2. Macroinvertebrados.

A. Composición y abundancia de especies. Se registraron los Phyllum Annelida, Arthropoda y Mollusca, dentro de los cuales se agrupan cuatro clases, siete órdenes y 13 familias. Se destacó Arthropoda como el filo más representativo, con la clase Insecta con una riqueza de nueve familias (69.2%), caso contrario a los filos Annelida y Mollusca, quienes registraron una (7.7%) y dos (15.4%) familias respectivamente (Tabla 3-5).

Tabla 3-5. Abundancia relativa de las familias de macroinvertebrados registrados en el humedal La Moya de Enrique, Ambalema-Tolima.

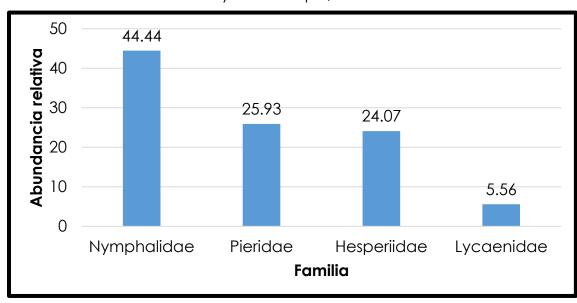
Phyllum	Clase	Orden	Familia	AR%	Bmwp/ Col
Annelida	Clitellata	Hirudinida	Hirudinida	0.8	0
			Dytiscidae	3.7	9
	Insecta	Coleoptera	Hydrophilidae	3.3	3
			Scirtidae	2.0	7
Arthropoda		Diptera	Chironomidae	4.1	2
			Psychodidae	0.8	7
			Stratiomyidae	0.4	4
		Hemiptera	Belostomatidae	0.8	5

Phyllum	Clase	Orden	Familia	AR%	Bmwp/ Col
			Naucoridae	0.8	7
		Lepidoptera	Pyralidae	0.8	5
	Malacostraca	Amphipoda	Hyalellidae	80.8	7
Mollusca	Gastropoda	Parammatanhara -	Physidae	1.2	3
Mollusca		Basommatophora -	Planorbidae	0.4	5
				ICA	64 ACEPTABLE

Fuente: GIZ (2013)

3.2.3.3. Lepidópteros.

A. Composición y abundancia de especies. Se registraron un total de 54 individuos distribuidos en cuatro familias y 13 especies (Tabla 3-6).


Tabla 3-6. Abundancia relativa de las especies de mariposas registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

Familia	Especie	AB	AR%
	Junonia evarete	2	3.70
	Chlosyne lacinia	4	7.41
Nymphalidae	Danaus gilippus	4	7.41
Nymphalidae	Dione glycera	5	9.26
	Euptoieta hegesia		11.11
	Hermeuptychia hermes	3	5.56
U o o o o rii da o	Heliopetes petrus	5	9.26
Hesperiidae	Urbanus proteus	8	14.81
Lycaenidae	Hemiargus hanno	3	5.56
	Ascia monuste	10	18.52
Pieridae	Eurema claira		1.85
rielidae	Eurema venusta	2	3.70
	Pyrisitia limbia	1	1.85

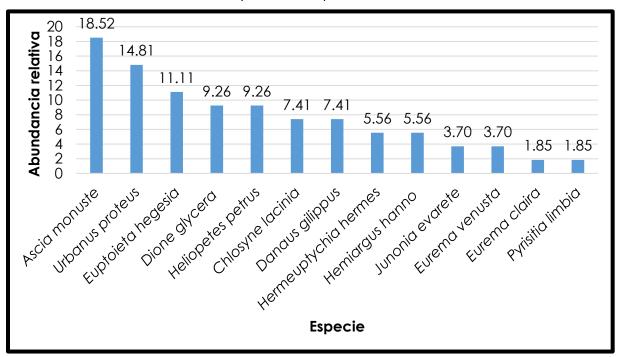
Fuente: GIZ (2022)

La familia Nymphalidae presentó la mayor abundancia relativa con un valor del 44.44% seguida por las familias Pieridae (29.93%) y Hesperiidae (24.07%); la familia que presentó menor abundancia fue Lycaenidae con 5.56% (Figura 3-20). Los ninfálidos están constituidos por grupos generalistas y especialistas de baja especificidad de hábitat y de amplia distribución, lo que permite que esta familia presente una gran abundancia tanto en áreas conservadas como en zonas con

gran intervención antrópica (Campos y Andrade, 2009), permitiéndoles una mayor adaptación ecológica en la explotación de los diversos recursos disponibles que en su estado adulto puede ser néctar (gremio nectarívoro) sales minerales disueltos en la arena húmeda (gremio hidrófilo) y materia orgánica en descomposición (gremio acimófago) esto obedece a que es la familia con mayor número de subfamilias en el Neotrópico (García et al., 2002).

Figura 3-20. Abundancia relativa de las familias de mariposas presentes en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)


La familia Pieridae se caracteriza por poseer atributos adecuados para la calidad del hábitat (Brown, 1991), también es de amplia distribución permitiéndole ser encontradas en zonas muy perturbadas hasta conservadas (Clench, 1966). El rango de distribución les permite una mejor respuesta adaptativa a las restricciones ambientales como la altitud, precipitación, temperatura y vientos (Dennis, 1993).

La especie Ascia monuste presentó la mayor abundancia relativa con un valor de 18.52%, seguida por Urbanus proteus (14.81%) y Euptoieta hegesia (11.11%). Por su parte, Dione glycera y Heliopetes petrus presentaron igual valor de abundancia relativa (9.26%), mientras que las especies Eurema claira y Pyrisitia limbia presentaron menor abundancia con un valor de 1.85% (Figura 3-21).

La especie Ascia monuste se puede encontrar tanto en zonas de transición o de borde como en zonas abiertas o de pradera. Entre sus plantas hospederas se registran especies de los géneros Brassica, Lepidium y Rorippa (Brassicaceae), Capparis y Crataeva (Capparaceae). Los géneros de las plantas alimenticias son hierbas que tienen jugos acuosos y amargos, inflorescencia en racimos o cogollos terminales y flores perfectas ya que presentan cuatro sépalos y cuatro pétalos; estas plantas se presentan en lugares templados (Heywood, 1985).

B. Especies de interés para la conservación. La especie Danaus gilippus llamada comúnmente "Mariposa reina" se evaluó recientemente para la Lista Roja de Especies Amenazadas de la IUCN en 2020, presentando una clasificación de preocupación menor (LC) y endémica (Tabla 3-6).

Figura 3-21. Abundancia relativa de las especies de mariposas registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

Tabla 3-6. Especies de interés para la conservación de lepidópteros diurnos registrados en el humedal La Moya de Enrique, Ambalema-Tolima. IUCN: preocupación menor (LC).

Familia	Familia Especie		Res. 1912	CITES	Estatus
Nymphalidae	Danaus gilippus	LC		NE	Е

Fuente: GIZ (2022)

3.2.3.4. Ictiofauna.

A. Composición y abundancia de especies. Al momento del monitoreo en el cuerpo de agua se observó que las orillas del humedal estaban cubiertas por pastizales y macrófitas enraizadas (localmente llamadas platanillos), que dificultaron el acceso al espejo de agua. Solo fue posible muestrear en un pequeño fragmento del espejo de agua en una de las orillas.

La estación EHPE1, se caracterizó por presentar macrófitas enraizadas como el platanillo y algunas flotantes como la lechuga de agua. Se observó una gran cantidad de pastizales en las orillas del humedal. La estación evaluada presentó sustratos de materia orgánica (detritos) y hojarasca. La profundidad fue de 70 cm en la zona más profunda. Al momento del muestreo se registró una temperatura de 24.7°C, conductividad de 190.3 µs, pH 7.85 y oxígeno disuelto de 3.8 mg/L.

Durante la actualización del plan de manejo ambiental (PMA) del humedal La Moya de Enrique realizada durante el mes de junio del año 2022, se registraron tres especies, tres familias y un orden (Blenniiformes) (Tabla 3-7). De las cuales Poecilia caucana, fue la más abundate con el 95% del total de individuos registrados.

Tabla 3-7. Abundancia relativa de las especies de peces registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

Clase	Orden	Familia	Especie	AB	AB%
		Cichlidae	Andinoacara latifrons	3	3.26
Actinopteri	teri Blenniiformes	Poeciliidae	Poecilia caucana	88	95.65
		Rivulidae	Rivulus magdalenae	1	1.09

Fuente: GIZ (2022)

B. Aspectos ecológicos. La gran dominancia espacial del orden Blenniiformes anteriormente conocido como Cyprinodontiformes, se debe a la presencia y abundancia de la especie *Poecilia caucana* comúnmente conocida como gupies. Esta, se encuentra frecuentemente en aguas estancadas con altas temperaturas y bajas concentraciones de oxígeno, por lo cual; algunos autores la consideran con indicadora de ecosistemas con altas cargas de nutrientes y/o degradados (Casatti et al., 2009). Adicionalmente, esta especie tiene la capacidad de consumir cualquier tipo de alimento disponible; y sus estrategias reproductivas de desove aseguran la supervivencia de estos organismos en condiciones adversas (Moyle y Cech, 1988)

La mojarra azul o anzuelera (Andinoacara latifrons) endémica para Colombia, pertenece a la familia Cichlidae y se asocia a ecosistemas acuáticos lenticos

como humedales, ciénagas y a las zonas de los remansos de los ríos y quebradas, con fondos de arena, grava o hojarasca, principalmente insectívoro (Maldonado-Ocampo et al., 2005).

La especie *Rivulus magdalenae*, es frecuente en cuerpos de agua con corriente lenta, con fondo de arena, lodo y abundante vegetación sumergida. Esta especie se alimenta de insectos acuáticos y terrestres presentes en la superficie del agua o escondidos entre la vegetación. Además de esto, estos organismos presentan ciclos reproductivos muy cortos que les permiten vivir en cuerpos de agua intermitentes, los cuales dependen de las precipitaciones (García-Melo y Lozano, 2008).

C. Especies de interés para la conservación. Las especies registradas se encuentran en categoría de preocupación menor (LC) (Tabla 3-8). Esta categoría hace referencia a que estas especies han sido evaluadas en diferentes estudios y no se encuentran en ningún tipo de peligro, adicionalmente, estas especies son abundantes y se encuentran bien distribuidas. Las especies Andinoacara latifrons y Rivulus magdalenae son endémicas para Colombia.

Tabla 3-8. Especies de interés para la conservación de peces registrados en el humedal La Moya de Enrique, Ambalema-Tolima.

Especie	IUCN	CITES	Res/1912-2017	Estatus	Observaciones
Poecilia caucana	LC	NE	NE	R	Uso ornamental
Andinoacara latifrons	LC	NE	NE	E	
Rivulus magdalenae	LC	NE	NE	E	

*NE: No evaluado o no aplica. IUCN: preocupación menor (LC).

Fuente: GIZ (2022)

Durante el PMA del humedal La Moya de Enrique, realizado en el año 2010, se reportan tres especies de las cuales Andinoacara latifrons también fue registrada en la actualización del PMA realizado en el 2022. Las especies Prochilodus magdalenae y Caquetaia umbrifera fueron reportadas para el 2013 (GIZ y CORTOLIMA, 2013), la primera en categoría Vulnerable y la segunda casi amenazada. Con la actualización del PMA se pueden agregar dos especies más a este listado, Poecilia caucana y Rivulus magdalenae. Estas últimas, frecuentes en zonas litorales con abundante materia orgánica.

La ausencia de *Prochilodus magdalenae* y *Caquetaia umbrifera* en el 2022, se debe posiblemente a la reducción del espejo de agua y a la imposibilidad de muestrear en zonas más profundas del humedal. Sin embargo, vale la pena resaltar que los lugareños reportan pescar estas especies aun en la zona.

3.2.3.5. Herpetofauna.

A. Composición y abundancia de especies. A través del muestreo realizado en el humedal La Moya de Enrique en el municipio de Ambalema (Tolima), se registró un total de 171 individuos, nueve anfibios y cuatro reptiles, agrupados en dos órdenes, ocho familias, nueve géneros y 13 especies (Tabla 3-9). La familia Leptodactylidae presentó la mayor riqueza (cinco especies) y abundancia 96 individuos lo que representa el 56%, seguido por la familia Bufonidae con 45 individuos (dos especies; 26%) del orden de los anura.

A partir de la evaluación de La Moya de Enrique, con un esfuerzo de muestreo de 11 horas/día/hombre durante dos días efectivos de campo realizados en el mes de mayo de 2022, se registraron un total de 171 individuos.

Tabla 3-9. Abundancia relativa de las especies de herpetos registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

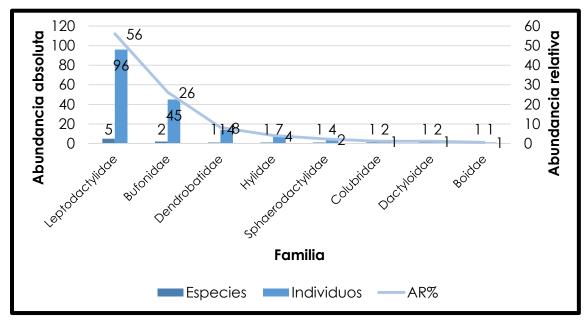
Clase	Orden	Familia	Especies	AB	AR%
		Bufonidae	Rhinella gr margaritifera	18	11
		bulonilade	Rhinella humboldti	27	16
		Dendrobatidae	Dendrobates truncatus	14	8
		Hylidae	Boana platanera	7	4
Amphibia	Anura		Engystomops pustulosus		12
			Leptodactylus colombiensis	14	8
		Leptodactylidae	Leptodactylus fragilis	19	11
			Leptodactylus fuscus	26	15
			Leptodactylus insularum	16	9
		Boidae	Epicrates cenchria	1	1
Reptilia	Sauamata	Colubridae	Mastigodryas plee	2	1
Kepillia	Squamata	Dactyloidae	Anolis auratus	2	1
		Sphaerodactylidae	Gonatodes albogularis	4	2

Fuente: GIZ (2022)

Las dos clases Amphibia y Reptilia (Figura 3-22) presentaron el mismo número de familias, aunque la clase Amphibia registró la mayor riqueza y abundancia (nueve especies; 162 individuos; 95%), resultado que se encuentra vinculado quizás a la alta especificidad de hábitat de los anfibios que hace que estos organismos se distribuyan principalmente en áreas con alta cobertura vegetal (dosel y sotobosque), mayor profundidad de hojarasca como los humedales, alta humedad relativa y temperaturas bajas característicos de los bs-t donde fueron registrados estas especies (Marsh y Pearman, 1997; Urbina-Cardona et al., 2006, Cortés-Gómez et al., 2013).

Abundancia absoluta Abundancia relativa Squamata Anura Orden Familia Especies Individuos AR%

Figura 3-22. Abundancia relativa y número de familias por orden de la Herpetofauna (anfibios y reptiles) presente en el humedal La Moya de Enrique, Ambalema-Tolima.


La familia más abundante de la clase Amphibia (Figura 3-23), fue la familia Leptodactylidae, la cual registró un total de 96 individuos lo que representan el 56% que corresponden a cinco especies, seguida de la familia Bufonidae con dos especie, 45 individuos y el 26% de la abundancia relativa, seguida de las familias Dendrobatidae (una especie; 14 individuos y 8%) e Hylidae (una especie; siete individuos y 4%). La menor abundancia la registró la familia Boidae de la clase Reptilia con una sola especie e individuo, lo que representó el 1% de la abundancia relativa total.

Este resultado estuvo asociado a que la especie fue observada un fragmento muy pequeño de Bs-T, el cual se asocia al humedal La Moya de Enrique, lo cual es muy contrastante respecto a los reptiles detectados en fragmentos de este mismo bosque en Córdoba (Colombia), los cuales presentan un alto grado de recambio de especies, especialmente entre fragmentos pequeños y grandes (Carvajal-Cogollo y Urbina-Cardona, 2008).

Con base en esto, es probable que el conjunto de especies que se encuentran en fragmentos pequeños es significativamente diferente, encontrándose una mayor riqueza o abundancia de las que se encuentran en fragmentos de mayor tamaño. Se resalta entonces la necesidad de conocer la relación de los reptiles con las variables bióticas y abióticas de su ambiente y la estructura vegetal de

éste para entender sus dinámicas espacio-temporales e identificar grupos de especies sensibles para priorizar su conservación (Urbina-Cardona et al., 2011).

Figura 1-23. Abundancia relativa y número de especies por familias de la Herpetofauna (anfibios y reptiles) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

A nivel de especie, Rhinella humboldti fue la más abundante con 27 individuos que corresponden al 16% de la abundancia relativa (Figura 3-24), seguida por Leptodactylus fuscus con 26 individuos (15% de la abundancia relativa) y Engystomops pustulosus con 21 individuos que corresponden al 12% (Figura 3-24). Las especies menos abundantes de este conjunto de herpetos fueron Mastigodryas plee*, Anolis auratus* y Epicrates cenchria con dos* y un individuo respectivamente, lo que corresponden al 1% de su abundancia relativa para todas estas especies.

Estos resultados posiblemente se encuentran relacionados con el hecho de que la riqueza de especies no es una variable de respuesta adecuada para ver cambios en los ensamblajes de anfibios o reptiles en gradientes de hábitat, debido a que en paisajes transformados hay especies provenientes de áreas antropogénicas que llegan a los bordes de los bosques (ecotonos), incrementando la riqueza específica en algunos hábitats perturbados con respecto a ambientes maduros y conservados.

Por lo anterior, se recomienda evaluar los cambios en los patrones de abundancia y composición a lo largo de gradientes de hábitat que nos permitan

entender mejor el cambio en la presencia/ausencia de las especies, así como las dinámicas entre especies dominantes y raras en los ensamblajes (Urbina-Cardona et al., 2011).

Figura 3-24. Abundancia relativa y número de especies de la Herpetofauna (anfibios y reptiles) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

B. Aspectos ecológicos y especies de interés para la conservación. Al revisar los libros rojos de anfibios y reptiles de Colombia (Rueda-Almonacid et al., 2004; Galvis-Rizo et al., 2015) y la lista roja de la IUCN (2022) en el humedal La Moya de Enrique no se registraron especies en categorías de amenaza, de modo que todas las especies reportadas se localizan en la categoría "preocupación menor" (LC) (Tabla 3-10).

Tabla 3-10. Especies de interés para la conservación de herpetos registradas en el humedal La Moya de Enrique, Ambalema-Tolima. IUCN: preocupación menor (LC).

Clase	Orden	Familia	Especies	IUCN	CITES
		D ('.	Rhinella gr margaritifera	LC	NE
		Bufonidae	Rhinella humboldti	LC	NE
		Dendrobatidae	Dendrobates truncatus	LC	NE
		Hylidae	Boana platanera	LC	NE
Amphibia	Anura		Engystomops pustulosus	LC	NE
		Leptodactylidae	Leptodactylus colombiensis	LC	NE
			Leptodactylus fragilis	LC	NE
			Leptodactylus fuscus	LC	NE
			Leptodactylus insularum	LC	NE
		Boidae	Epicrates cenchria	LC	NE
Reptilia	Sauamata	Colubridae	Mastigodryas plee	LC	NE
Kepillia	Squamata	Dactyloidae	Anolis auratus	LC	NE
	•	Sphaerodactylidae	Gonatodes albogularis	LC	NE

^{*}Las abreviaturas corresponden a las descritas en La Lista Roja de Especies Amenazadas de la IUCN, 2022. Preocupación menor (LC), Estatus de conservación: Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES); *NE: No evaluado o no aplica.

Por otro lado, al comparar la información de las especies reportadas en el PMA 2013 con el ajuste 2022, se registra un mayor número de especies, en el presente estudio (Tabla 3-11). Este resultado representa un aumento del 70% de la riqueza de la herpetofauna en el humedal La Moya de Enrique en el municipio de Ambalema del departamento del Tolima (Tabla 3-11).

Tabla 3-11. Comparación de las especies de anfibios y reptiles y su abundancia, registradas en el Plan de Manejo Ambiental (PMA 2013) del humedal La Moya de Enrique, Ambalema-Tolima.

Registro	Familia	Especie	AR%
	Bufonidae	Rhinella humboldti	1
		Engystomops pustulosus	1
	Lontodactylidae	Leptodactylus bolivianus	1
CI7 of	Leptodactylidae	Leptodactylus colombiensis	1
GIZ et al (2013)		Leptodactylus fragilis	1
di (2013)	Phyllodactylidae	Thecadactylus rapicauda	1
	Scincidae	Mabuya mabouya	1
	Sphaerodactylidae	Gonatodes albogularis	1
	Teidae	Ameiva sp.	1
	Bufonidae	Rhinella gr margaritifera	11

Registro	Familia	Especie	AR%
		Rhinella humboldti	16
	Dendrobatidae	Dendrobates truncatus	8
	Hylidae	Boana platanera	4
		Engystomops pustulosus	12
	Leptodactylidae	Leptodactylus colombiensis	8
Estudio		Leptodactylus fragilis	11
Actual-2022		Leptodactylus fuscus	15
		Leptodactylus insularum	9
	Boidae	Epicrates cenchria	1
	Colubridae	Mastigodryas plee	1
	Dactyloidae	Anolis auratus	1
	Sphaerodactylidae	Gonatodes albogularis	2

3.2.3.6. Avifauna.

A. Composición y abundancia de especies. Con un esfuerzo de muestreo de 65 horas red y aproximadamente 780 minutos de observaciones libres y en puntos de conteo, se registraron 33 especies de aves distribuidas en 19 familias y diez órdenes (total registros: 71) (Tabla 3-12).

En comparación con los resultados obtenidos por Losada-Prado y Molina-Martínez (2011) (297 especies), en este estudio se encontró el 11.11% de las especies reportadas para el bosque seco tropical del Tolima y el 22.45% de las especies comúnmente observadas en algunos humedales de zonas bajas del departamento (147 especies) (Pacheco-Vargas et al., 2018).

Tabla 3-12. Abundancia relativa de las especies de aves registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

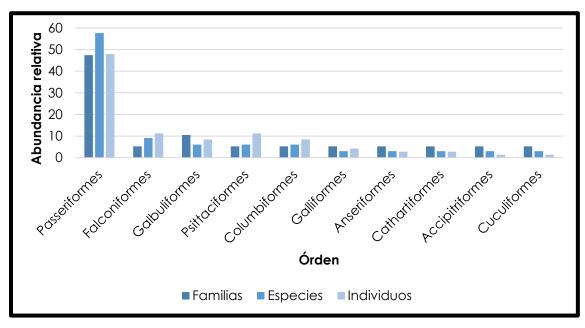
Orden	Familia	Especie	AB	AR%	CE
Anseriformes	Anatidae	Dendrocygna autumnalis	2	2.82	IVb
Galliformes	Cracidae	Ortalis columbiana	3	4.23	II
Columbiformes	Columbidae	Leptotila verreauxi	4	5.63	II
Columbiformes	Columbidae	Columbina talpacoti	2	2.82	Ш
Cuculiformes	Cuculidae	Crotophaga major	1	1.41	[]
Cathartiformes	Cathartidae	Coragyps atratus	2	2.82	Vb
Accipitriformes	Accipitridae	Rupornis magnirostris	1	1.41	
Galbuliformes	Galbulidae	Galbula ruficauda	4	5.63	
Galbuliformes	Bucconidae	Hypnelus ruficollis	2	2.82	
Falconiformes	Falconidae	Herpetotheres cachinnans	3	4.23	
Falconiformes	Falconidae	Caracara plancus	1	1.41	Ш
Falconiformes	Falconidae	Milvago chimachima	4	5.63	Ш

Orden	Familia	Especie	AB	AR%	CE
Psittaciformes	Psittacidae	Amazona ochrocephala	6	8.45	
Psittaciformes	Psittacidae	Forpus conspicillatus	2	2.82	Ш
Passeriformes	Thamnophilidae	Thamnophilus doliatus	2	2.82	Ш
Passeriformes	Thamnophilidae	Myrmeciza longipes	2	2.82	II
Passeriformes	Tyrannidae	Todirostrum cinereum	1	1.41	Ш
Passeriformes	Tyrannidae	Elaenia flavogaster	1	1.41	Ш
Passeriformes	Tyrannidae	Pitangus sulphuratus	3	4.23	Ш
Passeriformes	Tyrannidae	Megarynchus pitangua	1	1.41	
Passeriformes	Tyrannidae	Myiodynastes maculatus	1	1.41	
Passeriformes	Tyrannidae	Myiozetetes cayanensis	2	2.82	Ш
Passeriformes	Tyrannidae	Tyrannus melancholicus	2	2.82	Ш
Passeriformes	Vireonidae	Cyclarhis gujanensis	1	1.41	
Passeriformes	Vireonidae	Hylophilus flavipes	3	4.23	Ш
Passeriformes	Corvidae	Cyanocorax affinis	3	4.23	II
Passeriformes	Troglodytidae	Cantorchilus leucotis	4	5.63	
Passeriformes	Polioptilidae	Polioptila plumbea	1	1.41	Ш
Passeriformes	Turdidae	Turdus leucomelas	1	1.41	Ш
Passeriformes	Parulidae	Myiothlypis fulvicauda	1	1.41	IVa
Passeriformes	Thraupidae	Volatinia jacarina	1	1.41	Ш
Passeriformes	Thraupidae	Melanospiza bicolor	1	1.41	Ш
Passeriformes	Thraupidae	Thraupis episcopus	3	4.23	II

^{*}CE: Categoría ecológica.

Así mismo, teniendo en cuenta un estudio previo realizado en el humedal (GIZ y CORTOLIMA, 2013), se detectaron 14 especies que habían sido registradas previamente (Tabla 3-13) y se incluyeron 19 especies nuevas, completando un total de 50 especies observables dentro del área de estudio. La ausencia de especies migratorias dentro de este estudio, coincide con el hecho de que estas especies llegan al país a finales de septiembre y regresan a su zona de reproducción a principios de marzo (Ocampo-Peñuela, 2010), por lo cual, el período de muestreo no se solapó con el de migración.

Tabla 3-13. Especies registradas previa y actualmente en el humedal La Moya de Enrique, Ambalema-Tolima.

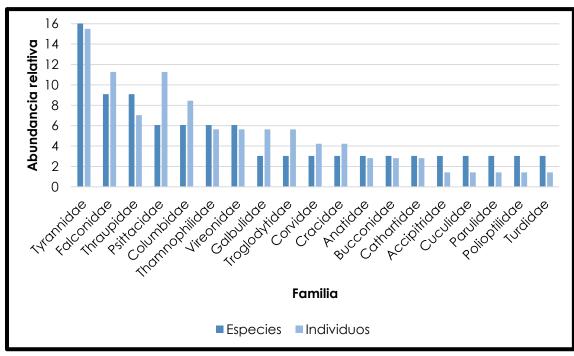

Orden	Familia	Especie	2013	2022
Anseriformes	Anatidae	Dendrocygna autumnalis		Χ
Galliformes	Cracidae	Ortalis columbiana		Χ
Columbiformes	Columbidae	Columba Livia	Χ	
Columbiformes	Columbidae	Leptotila verreauxi		Χ

Orden	Familia	Especie	2013	2022
Columbiformes	Columbidae	Columbina talpacoti		Χ
Cuculiformes	Cuculidae	Crotophaga major	Χ	Χ
Cuculiformes	Cuculidae	Crotophaga sulcirostris	Χ	
Apodiformes	Trochilidae	Glaucis hirsutus	Χ	
Charadriiformes	Charadriidae	Vanellus chilensis	Χ	
Charadriiformes	Jacanidae	Jacana jacana	Χ	
Pelecaniformes	Ardeidae	Bubulcus ibis	Χ	
Pelecaniformes	Ardeidae	Ardea alba	Χ	
Pelecaniformes	Threskiornithidae	Phimosus infuscatus	Χ	
Cathartiformes	Cathartidae	Coragyps atratus		Χ
Accipitriformes	Accipitridae	Rupornis magnirostris	Χ	Χ
Galbuliformes	Galbulidae	Galbula ruficauda	Χ	Χ
Galbuliformes	Bucconidae	Hypnelus ruficollis		Χ
Piciformes	Picidae	Melanerpes rubricapillus	Χ	
Falconiformes	Falconidae	Herpetotheres cachinnans		Χ
Falconiformes	Falconidae	Caracara plancus		Χ
Falconiformes	Falconidae	Milvago chimachima		Χ
Psittaciformes	Psittacidae	Amazona ochrocephala	Χ	Χ
Psittaciformes	Psittacidae	Forpus conspicillatus	Χ	Χ
Passeriformes	Thamnophilidae	Thamnophilus doliatus	Χ	Χ
Passeriformes	Thamnophilidae	Formicivora grisea	Χ	
Passeriformes	Thamnophilidae	Myrmeciza longipes	X	X
Passeriformes	Furnariidae	Certhiaxis cinnamomeus	X	
Passeriformes	Furnariidae	Synallaxis albescens	X	
Passeriformes	Tyrannidae	Todirostrum cinereum	X	X
Passeriformes	Tyrannidae	Elaenia flavogaster		X
Passeriformes	Tyrannidae	Pitangus sulphuratus	Х	X
Passeriformes	Tyrannidae	Megarynchus pitangua		Χ
Passeriformes	Tyrannidae	Myiodynastes maculatus		Х
Passeriformes	Tyrannidae	Myiozetetes cayanensis	Х	Χ
Passeriformes	Tyrannidae	Tyrannus melancholicus	Х	Х
Passeriformes	Tyrannidae	Pyrocephalus rubinus	Х	
Passeriformes	Vireonidae	Cyclarhis gujanensis	Х	Х
Passeriformes	Vireonidae	Hylophilus flavipes	Χ	X
Passeriformes	Corvidae	Cyanocorax affinis		Х
Passeriformes	<u>Troglodytidae</u>	Cantorchilus leucotis		X
Passeriformes	Polioptilidae	Polioptila plumbea	Χ	X
Passeriformes	Turdidae	Turdus leucomelas		Χ
Passeriformes	<u>Icteridae</u>	Icterus nigrogularis	X	
Passeriformes	Icteridae	Chrysomus icterocephalus	Χ	

Orden	Familia	Especie	2013	2022
Passeriformes	Parulidae	Myiothlypis fulvicauda		Χ
Passeriformes	Thraupidae	Volatinia jacarina		Χ
Passeriformes	Thraupidae	Sporophila schistacea	Χ	
Passeriformes	Thraupidae	Sporophila funerea	Χ	
Passeriformes	Thraupidae	Melanospiza bicolor		Χ
Passeriformes	Thraupidae	Thraupis episcopus		Χ

El orden más diverso y abundante fue Passeriformes con nueve familias, 19 especies y 34 registros (Figura 3-25), seguido respecto al número de familias por Galbuliformes con dos; los demás órdenes presentaron una sola familia. Así mismo, partiendo del número de especies, los órdenes Columbiformes, Falconiformes y Galbuliformes* fueron los siguientes más rico con dos y tres* especies respectivamente; los demás órdenes registraron una sola especie (Figura 3-25).

Figura 3-25. Abundancia relativa de familias, especies y registros en los órdenes de aves presentes en el humedal La Moya de Enrique, Ambalema-Tolima.


Fuente: GIZ (2022)

De acuerdo con autores como Manchado y Peña (2000), Hilty y Brown (2001) y Ricklefs (2012), estos resultados no solo se ajustan a lo reportado para el bosque

seco tropical del Tolima (Losada-Prado y Molina-Martínez, 2011), sino también a los patrones de diversidad mundial y neotropical, ya que el orden Passeriformes se posiciona como el más diverso dentro de la clase aves debido a que se compone de especies adaptadas a todos los hábitats.

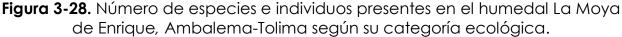
Además, estos resultados coinciden con la información conocida para otros humedales de zonas bajas en el departamento del Tolima como El Burro, La Garcera, La Herreruna, La Zapuna, Albania, Azuceno, La Huaca, Laguna De Coya, Las Garzas, Río Viejo, Saldañita, Samán, Caracolí, Chicualí, El Silencio, El Toro, Gavilán, Toqui-Toqui, Corinto, El Suizo, entre otros (GIZ y CORTOLIMA, 2010, 2013-2015, 2016, 2019; Pacheco-Vargas et al., 2018).

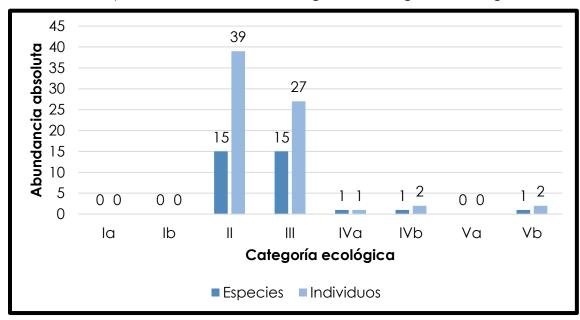
En cuanto al número de especies y registros, la familia con mayor riqueza y abundancia fue Tyrannidae (siete especies, 15.49% de los registros) (Figura 3-26), seguida en el número de especies por Thraupidae y Falconidae (con tres cada una) y en el número de detecciones por Psittacidae, Falconidae y Columbidae, las cuales suman el 30.99% de los registros.

Figura 3-26. Abundancia relativa de especies y registros por familia de aves presentes en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

Este resultado coincide con lo reportado para América (AOU, 1998) y la región neotropical en donde ambas familias, Tyrannidae y Thraupidae se posicionan entre las más abundantes y diversas (Traylor, 1977) y autores como Isler y Isler (1987) señalan que su diversidad está dada por el hecho de que dos tercios de sus especies ocurren completamente en la región. Así mismo, ambas familias se registran como las más abundantes a nivel a nivel nacional (Hilty y Brown, 2001) y departamental en diferentes humedales ubicados por debajo de los 1000 metros sobre el nivel del mar en el Tolima (por ejemplo, La Herreruna, La Zapuna, Azuceno, La Huaca, Laguna De Coya, Saldañita, Samán, Chicualí, El Silencio, El Toro, Gavilán, Toqui-Toqui, Corinto y El Suizo) (GIZ y CORTOLIMA, 2010, 2013-2015, 2016, 2017, 2019; Pacheco-Vargas et al., 2018).


Por otro lado, tanto Thraupidae como Tyrannidae son familias muy comunes en tierras intervenidas o destinadas a la agricultura (Hilty y Brown, 2001), ya que la mayor parte de sus especies presentan bajos requerimientos de hábitat en términos de cobertura vegetal y presencia humana, mostrando dietas a base de insectos, semillas y frutas, los cuales constituyen recursos cuantiosos en zonas intervenidas (Corporación Autónoma Regional de Risaralda y Wildlife Conservation Society, 2012), por lo cual su abundancia dentro del humedal es de esperar ya que en el área circundante se registran cultivos de arroz y una notable intervención antrópica.


Las especies más abundantes fueron Amazona ochrocephala, Leptotila verreauxi, Galbula ruficauda, Milvago chimachima y Cantorchilus leucotis con entre seis y cuatro registros cada una (Figura 3-27). La abundancia de estas especies se asocia al hecho de que la mayoría de ellas son muy activas y constituyen aves comunes en lagunas de agua dulce con cobertura arbórea en sus márgenes o en áreas semiabiertas con intervención humana (Hilty y Brown, 2001).

B. Categorías ecológicas y especies de interés para la conservación. Las categorías ecológicas que más especies e individuos registraron en el humedal La Moya de Enrique fueron la II (15 especies, 39 registros) y la III (15 especies, 27 registros), dentro de las cuales se agrupan aquellas especies con alta tolerancia a la intervención humana y bajos requerimientos de hábitat (Stiles y Bohórquez, 2000) (Figura 3-28).

9 Abundancia relativa 8 7 6 5 4 3 2 1 Amazona ochrocephala Volatinia jacarina Leptotila verreauxi Salbula ruficauda Milvago chimachima Cantorchilus leucotis Ortalis columbiana Herpetotheres cachinnans Pitangus sulphuratus **Cyanocorax** affinis Thraupis episcopus Coragyps atratus Hypnelus ruficollis Forpus conspicillatus Thamnophilus doliatus yrannus melancholicus Crotophaga major Rupornis magnirostris Caracara plancus Megarynchus pitangua Cyclarhis gujanensis Polioptila plumbea Turdus leucomelas Myiothlypis fulvicauda Melanospiza bicolor Hylophilus flavipes Dendrocygna autumnalis Columbina talpacoti Myrmeciza longipes Myiozetetes cayanensis Elaenia flavogaster Todirostrum cinereum Myiodynastes maculatus **Especie**

Figura 3-27. Abundancia total de registros de las especies de aves detectadas en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

Como se mencionaba, este resultado coincide con lo observado en el área de estudio y en un trabajo previo realizado en el humedal (GIZ y CORTOLIMA, 2013), en el cual se estableció que la zona contaba con poca cobertura vegetal arbórea producto principalmente de la agricultura, ganadería y demás procesos antrópicos que se desarrollan en sus inmediaciones, por lo cual las especies ampliamente tolerantes y pertenecientes a estas categorías cuentan con un hábitat que les brinda recursos cuantiosos y que favorece su desarrollo.

- Especies en categoría IUCN. Al revisar los libros rojos de aves de Colombia (Renjifo et al., 2002; Renjifo et al., 2014) y la lista roja de la IUCN (2022) en el humedal La Moya de Enrique no se registraron especies en categorías de amenaza, de modo que todas las especies detectadas se localizan en la categoría "preocupación menor" (LC) según la IUCN (Tabla 3-14).
- Especies en apéndices CITES. Del total de especies reportadas, seis se encuentran dentro del apéndice II y una en el apéndice III del CITES, constituyendo especies que no están necesariamente amenazadas de extinción pero que podrían estarlo si no se controla su comercio (Roda et al., 2003) (Tabla 3-14).
- **Especies migratorias.** Con base en las listas de aves de Naranjo y Espinel (2009), Naranjo et al. (2012), Avendaño et al. (2017) y Ayerbe-Quiñones (2018), no se registraron especies migratorias dentro del humedal. Como se mencionó anteriormente, la ausencia de especies migratorias está relacionada con el hecho de que durante la época en la cual se realizó el muestreo (mayo), estas especies no se hallan en el país (Ocampo-Peñuela, 2010).
- Especies endémicas. Con base en lo reportado por Chaparro-Herrera et al. (2013), Avendaño et al. (2017) y Ayerbe-Quiñones (2018), en el humedal La Moya de Enrique se registraron una especie endémica (Ortalis columbiana) y dos especies casi endémicas (Forpus conspicillatus y Cyanocorax affinis) (Tabla 3-14). Según Chaparro-Herrera et al. (2013), tanto las categorías de especies endémicas como casi-endémicas, pueden ayudar a un país a identificar responsabilidades a la hora de definir prioridades de conservación y realizar planes de manejo para la conservación de estas especies y sus hábitats, por lo cual ambas categorías se hacen importantes a la hora de mantener una cuidadosa observación sobre la situación de las mismas en el humedal.

Tabla 3-14. Especies de interés para la conservación de aves registradas en el humedal La Moya de Enrique, Ambalema-Tolima. IUCN: preocupación menor (LC).

Orden	Familia	Especie	CITES	IUCN	Estatus
Anseriformes	Anatidae	Dendrocygna autumnalis	Ш	LC	R
Galliformes	Cracidae	Ortalis columbiana	NE	LC	R-E
Accipitriformes	Accipitridae	Rupornis magnirostris	II	LC	R
Falconiformes	Falconidae	Herpetotheres cachinnans	П	LC	R
Falconiformes	Falconidae	Caracara plancus	II	LC	R
Falconiformes	Falconidae	Milvago chimachima	П	LC	R
Psittaciformes	Psittacidae	Amazona ochrocephala	П	LC	R
Psittaciformes	Psittacidae	Forpus conspicillatus	П	LC	R-CE
Passeriformes	Corvidae	Cyanocorax affinis	NE	LC	R-CE

^{*}CE: Casi endémicas; E: Endémica; *NE: No evaluado o no aplica.

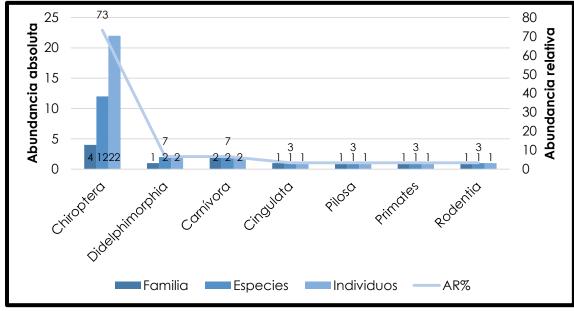
3.2.3.7. Mastofauna.

A. Composición y abundancia de especies. A partir de la evaluación del humedal La Moya de Enrique se empleó un esfuerzo de captura de 38 m² red, noche, horas y 924 Video o foto/seis días trampa cámara, con lo cual se registraron 30 individuos (Tabla 3-15), representados en siete órdenes, 11 familias y 20 especies, las cuales corresponden al 3.68% de las especies registradas para Colombia (Ramírez-Chaves et al., 2021).

Esta información es relevante en estos ambientes (humedal), ya que la riqueza biológica que albergan se convierte en una reserva genética que permite garantizar funciones ecológicas y el suministro de una amplia variedad de servicios ecosistémicos, como regulación hídrica, control de insectos, dispersión de semillas, polinización, regulación de clima, recreación y producción de alimentos (Mitsch y Gosselink, 2000; Braat y de Groot, 2012; McInnes, 2013; Zhang et al. 2017; Ramírez-Fráncel et al., 2022).

Tabla 3-12. Abundancia relativa de las especies de mamíferos registrados en el humedal La Moya de Enrique, Ambalema-Tolima.

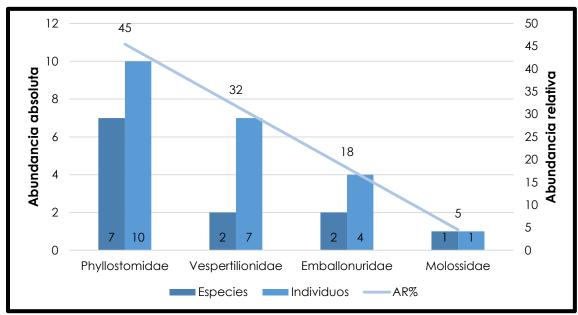
Orden	Familia	Especie	АВ	AR%	Método
Didelphimorphia	Didelphidae	Chironectes minimus	1	3	RN
		Marmosa robinsoni	1	3	RN
Cingulata	Dasypodidae	Dasypus novemcinctus	1	3	RN
Pilosa	Myrmecophagidae	Tamandua mexicana	1	3	RN
Chiroptera	Emballonuridae	Saccopteryx bilineata	1	3	RN

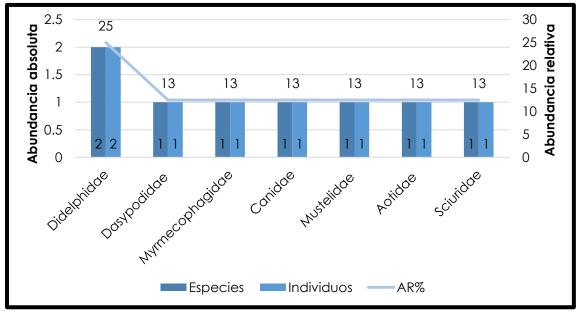

Orden	Familia	Especie	АВ	AR%	Método
		Saccopteryx leptura	3	10	RN
		Carollia brevicauda	4	13	RN
		Carollia perspicillata	1	3	RN
		Desmodus rotundus	1	3	RN
	Phyllostomidae	Phylloderma stenops	1	3	RN
		Phyllostomus discolor	1	3	RN
		Artibeus lituratus	1	3	RN
		Sturnira giannae	1	3	RN
	Molossidae	Molossus molossus	1	3	RN
	Vocactilionidae	Myotis nigricans	4	13	RN
	Vespertilionidae	Rhogeessa io 3		10	RN
Carnívora	Canidae	Cerdocyon thous	1	3	TC y TH
Carnivora	Mustelidae	Lontra longicaudis	1	3	TC y TH
Primates	Aotidae	Aotus griseimembra	1	3	TC
Rodentia	Sciuridae	Notosciurus granatensis	1	3	TC

^{*}Las abreviaturas corresponden a los métodos: Redes de Niebla (RN), Trampa Huella (TH) y Trampa-Cámara (TC).

Como se mencionó, esta diversidad incluye siete órdenes, siendo Chiroptera el más diverso y abundante con 12 especies que representan el 73%, seguido por Didelphimorphia y Carnívora con dos especies y el 7% respectivamente (Figura 3-29). Por su parte los órdenes Cingulata, Pilosa, Primates y Rodentia estuvieron representados por una especie cada uno, y fueron los que aportaron los valores más bajos de abundancia (3%).

Es de resaltar que el orden Chiroptera fuera el más abundante y diverso, debido a que en la actualidad cuenta con el número más alto de especies de mamíferos registradas en Colombia (Ramírez-Chávez et al., 2021), sumado a ello, presentan altas abundancias principalmente a su fácil detectabilidad, a partir del uso de nuevas técnicas y exploraciones de campo que han facilitado la ampliación geográfica, riqueza y el registro de nuevas especies en este grupo taxonómico (Medellín, 2000; Trites y Joy, 2005; Hope et al., 2014; Ramírez-Fráncel et al., 2015; Ramírez-Fráncel et al., 2018; Ramírez-Fráncel et al., 2020; Fráncel et al., 2022).


Figura 3-29. Abundancia relativa y número de familias por orden de la mastofauna (mamíferos voladores, pequeños y no voladores) presente en el humedal La Moya de Enrique, Ambalema-Tolima.


Dentro de los mamíferos voladores, la familia más abundante fue Phyllostomidae con el 45% de los individuos registrados, seguido de Vespertilionidae con dos especies y siete individuos, los cuales representan el 32% de los registros (Figura 3-30). Estas abundancias se relacionan con el hecho de que los representantes de esta familia tienen una mayor resistencia a las transformaciones del ambiente y posiblemente se benefician con la fragmentación, ya que utilizan tanto bosque continuo, como ambientes perturbados, vegetación riparia, vegetación secundaria e incluso árboles y arbustos aislados en los pastizales (Galindo-Gonzales et al., 2000; Estrada y Coates-Estrada, 2001).

Para los medianos y grandes mamíferos quien registra la mayor abundancia relativa de las familias fue Didelphidae con dos especies (dos individuos; 25%, Figura 3-31) y las menores abundancias las registran Dasypodidae, Myrmecophagidae, Canidae, Mustelidae, Aotidae y Sciuridae con el 13% de los registros que corresponden a un individuo cada uno respectivamente, esta abundancia se ve reflejada en el hecho que los representantes de la familia Didelphidae poseen elevados valores de abundancia y dominancia en zonas perturbadas (Ballesteros et al., 2007; Calonge et al., 2010).

Figura 3-30. Abundancia relativa y número de especies por familias de la mastofauna (mamíferos voladores) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

Figura 3-31. Abundancia relativa y número de especies por familias de la mastofauna (mamíferos pequeños y medianos no voladores) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

4.5 20 18 18 18 4 16 Abundancia absoluta 3.5 14 14 Abundancia relativ 3 12 2.5 10 2 8 1.5 5 6 4 0.5 2 0 0 Desmodus rotundus Phyliostomus discolor saccoptery bilineard Artibeusituratus phylloderno steriops Individuos

Figura 3-32. Abundancia relativa y número de especies de la mastofauna (mamíferos voladores) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

Carollia brevicauda (18%) es una de las especies más frecuentes del sistema, tanto en términos absolutos como relativos, es decir esta especie fue quien registró los mayores valores de abundancia y mayor número de individuos por colecta para el humedal entre todos mamíferos registrados (Figura 3-32). Cabe señalar que C. brevicauda de hábito generalista le permite a esta especie adaptarse a las condiciones que el ambiente provea, explotando diferentes recursos (Kalko y Handley, 2001) y ha esta razón se deba su abundancia.

Las comparaciones entre los mamíferos medianos se registran a *Chironectes minimus* fue quien registró la mayor abundancia relativa para este humedal (Figura 3-33). Un estudio reciente demuestra que entre los mamíferos neotropicales, *C. minimus* es una de las especies localmente más abundantes y ampliamente distribuidas (García-Herrera et al., 2015).

1.2 14 13 13 13 13 13 13 13 13 Abundancia absoluta **Abundancia relativa** 12 10 8.0 8 0.6 6 0.4 4 0.2 2 0 0 Chilonectes minimus tobinsoni chercinctus condo nexicond nexicond condiciondiscinembro de materials de la composition del composition de la composition de la composition de la composition del composition de la Individuos -AR%

Figura 3-33. Abundancia relativa y número de especies de la mastofauna (mamíferos pequeños y medianos no voladores) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

Es de resaltar que el gremio de los hematófagos presenta una especie, Desmodus rotundus, es de las especies más frecuentes en el humedal, tanto en términos absolutos, como relativos, es decir que fue colectada en la mayor cantidad de redes de niebla (punto de muestreo), aun cuando el número de individuos por colecta fue menor que el de Carollia brevicauda, cabe señalar que D. rotundus, es una especie sumamente adaptable a perturbaciones antrópicas, que llega formar agrupaciones de hasta 5000 individuos en regiones con actividad ganadera (López-Forment et al., 1971; Suzán, 2005).

Por otro lado, al realizar la comparación de los resultados presentes en este estudio (2022; Tabla 3-16), con los reportes realizados por la Universidad del Tolima (GIZ y CORTOLIMA, 2013) e información secundaria publicada en este mismo Plan de Manejo Ambiental (García-Herrera et al., 2015), se registró que la abundancia, diversidad y riqueza en este sitio varió de acuerdo a la composición vegetal propia del sitio, de igual se registra una fuerte asociación entre la abundancia de mamíferos vinculados y asociados al humedal (Tabla 3-16).

Es necesario aclarar que en el presente Plan de Manejo Ambiental (PMA) se realizó la corrección de algunos especímenes que se encontraban

erróneamente identificados y se contrastaron con la publicación realizada por García-Herrera et al. (2019).

Tabla 3-16. Comparación de las especies de mastofauna (mamíferos voladores, pequeños y mamíferos no voladores) y su abundancia, registradas en el Plan de Manejo Ambiental (2013) del humedal La Moya de Enrique, Ambalema-Tolima.

Dicelphimorphia	Registro	Orden	Familia	Especies en el PMA	Correcciones en este estudio	AR%
Cingulata Dasypodidae Dasypus novemcincrius 1		Didalahimarahia	Didolphidae	Chironectes minimus		1
Philosa Mymecophagidae Tamandua mexicana Pilosa 1	-	Dideipriimorphia	Didelphidde	Didelphis marsupialis		1
CORTOLIMA (2013) Confrontada con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Giz y CORTOLIMA (2014) Confrontada Con García- Herrera et al (2019) Financia Chiroptera Chiroptera Didelphimorphia Didelphidae Cricatidae Chiroptera Didelphidae Chiroptera C		Cingulata	Dasypodidae	Dasypus novemcinctus		1
Controlled (2013) Chiroptera Phyllostomiade (2013) Chiroptera Phyllostomiade (2014) Carnivota (2		Philosa	Myrmecophagidae	Tamandua mexicana	Pilosa	1
Chiroptera Chiriptera Chiriptera Confontada Con García- Herrera et al (2019) Rodentia Rodentia Herrero et al (2019) Giz Y CORTOLIMA (2014) Confontada Con García- Herrera et al (2019) Finales Achica Herrero et al (2019) Finales Achica Cerdocyon thous 1 Lagomorfa Leporidae Herreronyidae Herrornyidae Micronycteris microtis Micronycterinae 1 Micronycteris microtis Micronycterinae 1 Micronycteris microtis Micronycterinae 1 Micronycteris microtis Micronycteris crenulatum 1 Morbiilonidae Noctilionidae Noctilio leporinus 3 Rodentia Cricetidae Sigmodon hispidus Sigmodon hirsutus 1 Ferthizontidae Condeu Coendou pruinosus 1 Ferthizontidae Marmosa robinsoni 1 Peropteryx macrotis 1 Feropteryx macrotis 1 Carolila perspicillata 1 Lonchophylla orbinata 1 Lonchophylla robusta 1 Lonchophy				Carollia brevicauda		1
Confondade Con Garcia Con Garcia Germera et al (2019) Camisora Artibeus planirostris Sturnira gilanna 1 Herrera et al (2019) Carnivora Canidae Cerdocyon thous		Chirantara	Dhyllostopsidae	Glossophaga longirostris	Glossophaga soricina	1
Carnivora Carnivora Canidae Cardocyon (hous 1	confrontada	Chiroptera	rnyllosiomidde	Artibeus planirostris		1
Carnivora Carnivora Cardace Cardacyon fhous 1 Primates				Sturnira lilium	Sturnira giannae	1
Primate		Carpívora	Canidae	Cerdocyon thous		1
Rodentia Heteromyidae Heteromys australis Heteromys anomalus 1	. (2011)	Carrivora	Mustelidae	Lontra longicaudis		1
Lagomorfa Leporidae Silvilagus brasiliensis 1		Primates	Aotidae	Aotus griseimembra		1
Phyllostomidae		Rodentia	Heteromyidae	Heteromys australis	Heteromys anomalus	1
Phyllostomidae		Lagomorfa	Leporidae	Silvilagus brasiliensis		1
ControllMa (2014) Chiroptera (2014) Confrontada (2014)			Phyllostomidae	Micronycteris microtis	Micronycterinae	1
COTOLIMA (2014) Chiroptera (2014) Noctilionidade (2014) Noctilionidade (2014) Noctilionidade (2014) Noctilionidade (2014) Myotis albescens (2014) 1 Confrontada (2019) Artiodactyla (2014) Cervidae (2014) Odocoileus virginianus (2014) 1 Rodentia (2019) Frethizontiidae (2014) Condeu (2014) Coendou pruinosus (2014) 1 Peropteryx macrotis (2014) Emballonuridae (2014) Peropteryx macrotis (2014) 1 GIZ y (2014) Emballonuridae (2014) Rhynchonycteris naso (2014) 1 CORTOLIMA (2014) Chiroptera (2014) Emballonuridae (2014) Carollia perspicillata (2014) 1 Confrontada (2014) Chiroptera (2014) Phyllostomus hastatus (2014) 1 Confrontada (2014) Chiroptera (2014) 1 1 Confrontada (2014) Chiroptera (2014) 1 <	GIZ y			Mimon crenulatum	Gardnerycteris crenulatum	1
Confrontada con García- Herrera et al (2019) Artiodactyla Cervidae Odocoileus virginianus 1 Altiodactyla Cervidae Sigmodon hispidus Sigmodon hirsutus 1 Rodentia Erethizontidae Condeu Coendou pruinosus 1 Bidelphimorphia Didelphidae Marmosa robinsoni 1 Peropteryx macrotis 1 1 Rhynchonycteris naso 1 1 Saccopteryx bilineata 1 1 Corrollima (2014) Chiroptera Emballonuridae Rhynchonycteris naso 1 Peropteryx macrotis 1 1 1 Rhynchonycteris naso 1 1 Saccopteryx bilineata 1 1 Carollia perspicillata 1 1 Lonchophylla robusta 1 1 Desmadus rotundus 1 1 Lophostoma silviculum 1 1 Phyllostomus hastatus 1 1 Trachops cirhossus 1 1 Artibeus lituratus 1	CORTOLIMA	Chiroptera	Noctilionidae	Noctilio leporinus		1
Artiodactyla Cervidae Odocoileus virginianus 1			\/ I'' ' 1	Myotis albescens		1
Herrera et al (2019) Artiodactyla (2019) Rodentia Cervidae (2019) Odocoileus virginianus (2019) Sigmodon hirsutus (2014) 1 Rodentia (2019) Rodentia (2019) Didelphimorphia (2014) Didelphimorphia (2014) Didelphidae (2014) Marmosa robinsoni (2014) 1 GIZ y CORTOLIMA (2014) Emballonuridae (2014) Rhynchonycteris naso (2014) 1 Conffontada con García-Herrera et al (2019) Chiroptera (2014) 1 Lophostoma silviculum (2014) 1 Phyllostomidae (2014) Phyllostomidae (2014) 1 1 1 Conffontada con García-Herrera et al (2019) Chiroptera (2014) 1<			vesperillorlidde	Myotis riparius		1
Rodentia		Artiodactyla	Cervidae	Odocoileus virginianus		1
Didelphimorphia	al (2019)	Rodentia	Cricetidae	Sigmodon hispidus	Sigmodon hirsutus	1
Peropteryx macrotis 1			Erethizontidae	Condeu	Coendou pruinosus	1
Emballonuridae		Didelphimorphia	Didelphidae	Marmosa robinsoni		1
Saccopteryx bilineata 1				Peropteryx macrotis		1
Carollia perspicillata 1				Rhynchonycteris naso		1
Corrollma				Saccopteryx bilineata		1
Cortolima (2014) Confrontada con García Herrera et al (2019) Enditor Chiroptera		Chiroptera		Carollia perspicillata		1
Cortolima (2014) Confrontada con García-Herrera et al (2019) Chiroptera Chi				Lonchophylla robusta		1
Phyllostomus hastatus 1				Desmodus rotundus		1
CORTOLIMA (2014) confrontada con García- Herrera et al (2019) Chiroptera Phyllostomidae Phyllostomidae Trachops cirhossus 1 Artibeus lituratus 1 Dermanura anderseni Artibeus anderseni 1 Sturnira oporaphilum Sturnira ludovici 1 Sturnira tildae Sturnira ludovici 1 Uroderma bilobatum Uroderma convexum 1 Noctilionidae Noctilio albiventris 1 Molossus ater cf Molossus molossus 1 Molossus rufus Molossus molossus 1	GIZ y			Lophostoma silviculum		1
Confrontada con García- Herrera et al (2019) Chiroptera Phyllostomidae Trachops cirhossus 1 Artibeus lituratus 1 Dermanura anderseni Artibeus anderseni 1 Sturnira oporaphilum Sturnira ludovici 1 Sturnira tildae Sturnira ludovici 1 Uroderma bilobatum Uroderma convexum 1 Noctilionidae Noctilio albiventris 1 Molossus ater cf Molossus molossus 1 Molossus rufus Molossus molossus 1	CORTOLIMA			Phyllostomus hastatus		1
Chiroptera Fraction Chiroptera				Tonatia saurophila		1
Artibeus lituratus 1 Dermanura anderseni Artibeus anderseni 1 Sturnira oporaphilum Sturnira ludovici 1 Sturnira tildae Sturnira ludovici 1 Uroderma bilobatum Uroderma convexum 1 Noctilionidae Noctilio albiventris 1 Molossus ater cf Molossus molossus 1 Molossus rufus Molossus molossus 1				Trachops cirhossus		1
Sturnira oporaphilum Sturnira ludovici 1				Artibeus lituratus		1
Sturnira tildae Sturnira ludovici 1 Uroderma bilobatum Uroderma convexum 1 Noctilionidae Noctilio albiventris 1 Molossus ater cf Molossus molossus 1 Molossus rufus Molossus molossus 1	al (2019)			Dermanura anderseni	Artibeus anderseni	1
Uroderma bilobatumUroderma convexum1NoctilionidaeNoctilio albiventris1MolossidaeMolossus ater cfMolossus molossus1Molossus rufusMolossus molossus1				Sturnira oporaphilum	Sturnira Iudovici	1
NoctilionidaeNoctilio albiventris1MolossidaeMolossus ater cfMolossus molossus1Molossus rufusMolossus molossus1				Sturnira tildae	Sturnira Iudovici	1
MolossidaeMolossus ater cfMolossus molossus1Molossus rufusMolossus molossus1				Uroderma bilobatum	Uroderma convexum	1
Molossidae Molossus rufus Molossus molossus 1			Noctilionidae	Noctilio albiventris		1
Molossus rufus Molossus molossus 1				Molossus ater cf	Molossus molossus	1
Vespertilionidae Eptesicus furinalis Eptesicus brasiliensis 1				Molossus rufus	Molossus molossus	1
Toporimoriado Eprosicos formans Eprosicos brasiliorios		•	Vespertilionidae	Eptesicus furinalis	Eptesicus brasiliensis	1

Registro	Orden	Familia	Especies en el PMA	Correcciones en este estudio	AR%
			Myotis nigricans		1
			Rhogeessa io		1
		Felidae	Puma yagouaroundi		1
	Carnívora	Mustelidae	Galictis vitata		1
		Procyonidae	Procyon cancrivorus		1
	Articalactula	Tayassuidae	Pecari tajacu		1
	Artiodactyla	Cervidae	Mazama americana	Mazama zetta	1
	Rodentia	Heteromyidae	Heteromys anomalus		1
	Rodeniid	Sciuridae	Sciurus granatensis	Notosciurus granatensis	1
	Didalahimarahia	Didolphidae	Chironectes minimus		3
	Didelphimorphia	Didelphidae	Marmosa robinsoni		3
	Cingulata	Dasypodidae	Dasypus novemcinctus		3
	Pilosa	Myrmecophagidae	Tamandua mexicana		3
		Emballonuridae	Saccopteryx bilineata		3
			Saccopteryx leptura		10
		Phyllostomidae	Carollia brevicauda		13
			Carollia perspicillata		3
			Desmodus rotundus		3
Estudio	Ola in a sail a man		Phylloderma stenops		3
Actual-2022	Chiroptera		Phyllostomus discolor		3
			Artibeus lituratus		3
			Sturnira giannae		3
		Molossidae	Molossus molossus		3
		Vespertilionidae	Myotis nigricans		13
			Rhogeessa io		10
	Carnívora	Canidae	Cerdocyon thous		3
	Carrivora	Mustelidae	Lontra longicaudis		3
	Primates	Aotidae	Aotus griseimembra		3
	Rodentia	Sciuridae	Notosciurus granatensis		3

B. Categorías ecológicas y especies de interés para la conservación. De las especies registradas a través del muestreo en el humedal La Moya de Enrique, no se les otorga una protección oficial por La Lista Roja de Especies Amenazadas de la IUCN y Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES), a 18 especies, estando estas en preocupación menor (LC, Tabla 3-17), es necesario resaltar la presencia de dos especies, Lontra longicaudis ha sido evaluada y clasificada como casi amenazada según el criterio A3c más recientemente para la IUCN en el 2020, esta clasificación se debe a la modificación y fragmentación de los hábitats naturales por las actividades humanas representa la principal amenaza para la especie, provocando el aislamiento y reducción de la población (Rheingantz et al., 2014; Gómez et al., 2014; Rheingantz y Trinca 2015; Rheingantz et al., 2017).

Así mismo, el mono nocturno de manos grises (Aotus griseimembra) ha sido evaluado más recientemente para la Lista Roja de Especies Amenazadas de la

IUCN en 2015, como Vulnerable según el criterio A2c, esta categoría es debido a la pérdida de hábitat debido a la ganadería a gran escala, las agroindustrias (ej., la palma aceitera) y la minería. La mayor parte del hábitat natural dentro de la distribución histórica de la especie se transformó y menos del 20% de su hábitat permanece en los bosques de tierras bajas y humedales de la cuenca del río Magdalena (Link et al., 2013).

Tabla 3-17. Especies de interés para la conservación de la mastofauna (Mamíferos voladores, pequeños y mamíferos no voladores) presente en el humedal La Moya de Enrique, Ambalema-Tolima.

			Estado de Amenaza		
Orden	Familia	Especies	IUCN	CITES	Res. 1912
Didalahimarahia	Didalahidaa	Chironectes minimus	LC	NE	
Didelphimorphia	Didelphidae	Marmosa robinsoni	LC	NE	
Cingulata	Dasypodidae	Dasypus novemcinctus	LC	NE	
Pilosa	Myrmecophagidae	Tamandua mexicana	LC	NE	
	Emballonuridae	Saccopteryx bilineata	LC	NE	
	Emballonuridae	Saccopteryx leptura	LC	NE	
		Carollia brevicauda	LC	NE	
		Carollia perspicillata	LC	NE	
		Desmodus rotundus	LC	NE	
Chinambana	Phyllostomidae	Phylloderma stenops	LC	NE	
Chiroptera		Phyllostomus discolor	LC	NE	
		Artibeus lituratus	LC	NE	
		Sturnira giannae	LC	NE	Res. 1912
	Molossidae	Molossus molossus	LC	NE	
-		Myotis nigricans	LC	NE	
	Vespertilionidae	Rhogeessa io	LC	NE	
Complete	Canidae	Cerdocyon thous	LC	NE	
Carnívora -	Mustelidae	Lontra longicaudis	NT	II	VU
Primates	Aotidae	Aotus griseimembra	VU	NE	VU
Rodentia	Sciuridae	Notosciurus granatensis	LC	NE	

^{*}Las abreviaturas corresponden a las descritas en La Lista Roja de Especies Amenazadas de la IUCN, 2022. Preocupación menor (LC), Estatus de conservación: Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES); *NE: No evaluado o no aplica.

Fuente: GIZ (2022)

CAPÍTULO 4. COMPONENTE CALIDAD DEL AGUA

4. CALIDAD DEL AGUA

4.1. MARCO CONCEPTUAL

La caracterización limnológica de un ecosistema acuático está orientada a la determinación de las características fisicoquímicas de las comunidades asociadas a ellas, debido a que las condiciones físicas y químicas del agua regulan la distribución y abundancia de los organismos que habitan allí (Roldán, 1996). En los últimos años estos estudios se han desarrollado con un enfoque integrador que ha permitido evaluar las interacciones que estos parámetros mantienen con los ecosistemas y entender el funcionamiento global de los ríos como sistemas ecológicos (Segnini y Chacón, 2005).

Por esta razón se determinó que los estudios limnológicos en estos ecosistemas deben ser realizados con una perspectiva a escala de cuenca, lo que permitirá relacionar las características biológicas de los ríos con los principales factores de perturbación antrópicos, Adicionalmente, deben estar orientados hacia la comprensión de la biodiversidad y determinar la utilidad de los modelos existentes en las zonas templadas para describir la estructura y función de los ríos tropicales (Segnini y Chacón, 2005).

Desde cualquier punto de vista físico y químico, en cualquier estudio sobre caracterización de aguas, es necesario contar con un programa de muestreo cuidadosamente diseñado y supervisado en los diferentes cuerpos de agua seleccionados para su estudio. Este diseño estará en función de los objetivos del estudio o tipo de caracterización, es decir que se debe programar el muestreo de acuerdo a las variables de carácter físico y químico a medir (Ruíz, 2002).

Los criterios de calidad de agua y las medidas de integridad biológica forman parte de la determinación de la integridad ecológica del sistema acuático. La calidad del agua se puede determinar mediante el análisis fisicoquímico, junto con los bacteriológicos y biológicos. Dentro de los primeros se incluyen la temperatura ambiental y del agua, el oxígeno disuelto, el pH, el nitrógeno, el fósforo, la alcalinidad, la dureza, los iones totales disueltos y los contaminantes industriales y domésticos que pueda tener, conductividad eléctrica, caudal, nitritos, nitratos, DBO, DQO, entre otros (Ruíz, 2002).

4.1.1. Factores fisicoquímicos y bacteriológicos de los humedales.

- 4.1.1.1. Temperatura. La radiación solar determina la calidad y cantidad de luz y además afecta la temperatura del agua (Roldán, 2003). Las propiedades lumínicas y calóricas de un cuerpo de agua están influidas por el clima y la topografía tanto como por las características del propio cuerpo de agua: su composición química, suspensión de sedimentos y su productividad de algas. La temperatura del agua regula en forma directa la concentración de oxígeno, la tasa metabólica de los organismos acuáticos y los procesos vitales asociados como el crecimiento, la maduración y la reproducción.
- 4.1.1.2. Oxígeno disuelto. El oxígeno disuelto es uno de los indicadores más importantes de la calidad del agua. Sólo tiene valor si se mide con la temperatura, para poder así establecer el porcentaje de saturación. Las fuentes de oxígeno son la precipitación pluvial, la difusión del aire en el agua, la fotosíntesis, los afluentes y la agitación moderada.

La solubilidad del oxígeno en el agua depende de la temperatura, la presión atmosférica, la salinidad, la contaminación, la altitud, las condiciones meteorológicas y la presión hidrostática (Roldán y Ramírez, 2008). En un cuerpo de agua se produce y a la vez se consume oxígeno. La producción de oxígeno está relacionada con la fotosíntesis, mientras el consumo dependerá de la respiración, descomposición de sustancias orgánicas y otras reacciones químicas.

4.1.1.3. Porcentaje de saturación de oxígeno (% O₂). Es el porcentaje máximo de oxígeno que puede disolverse en el agua a una presión y temperatura determinadas (Roldán y Ramírez, 2008). Por ejemplo, se dice que el agua está saturada en un 100% si contiene la cantidad máxima de oxígeno a esa temperatura. Una muestra de agua que está saturada en un 50% solamente tiene la mitad de la cantidad de oxígeno que potencialmente podría tener a esa temperatura.

A veces, el agua se sobresatura con oxígeno debido a que el agua se mueve rápidamente. Esto generalmente dura un período corto de tiempo, pero puede ser dañino para los peces y otros organismos acuáticos. Los valores del porcentaje de saturación del oxígeno disuelto de 80 a 120% se consideran excelentes y los valores menores al 60% o superiores a 125% se consideran malos (Perdomo y Gómez, 2000).

- 4.1.1.4. Demanda biológica de oxígeno (DBO5). Es una medida de la concentración de oxígeno usada por los microorganismos para degradar y estabilizar la materia orgánica biodegradable o materia carbonácea en condiciones aérobicas en cinco días a 20°C. En general, el principal factor de consumo de oxígeno libre es la oxidación de la materia orgánica por respiración a causa de microorganismos descomponedores (bacterias heterotróficas aeróbicas) (Roldán y Ramírez, 2008).
- 4.1.1.5. Demanda química de oxígeno (DQO). Es el parámetro analítico de contaminación que mide el contenido de materia orgánica en una muestra de agua mediante oxidación química. Permite determinar las condiciones de biodegradabilidad, así como la eficacia de las plantas de tratamiento (Roldán y Ramírez, 2008).
- 4.1.1.6. pH. Es una abreviatura para representar potencial de hidrogeniones (H+) e indica la concentración de estos iones en el agua. El pH expresa la intensidad de la condición ácida o básica de una solución, este parámetro está íntimamente relacionado con los cambios de acidez y basicidad y con la alcalinidad. La notación pH expresa la intensidad de la condición ácida y básica de una solución. Expresa además la actividad del ion hidrógeno (Roldán y Ramírez, 2008).
- 4.1.1.7. Conductividad eléctrica. Es una medida de la propiedad que poseen las soluciones acuosas para conducir la corriente eléctrica. Esta propiedad depende de la presencia de iones, su concentración, movilidad, valencia y la temperatura de medición. La variación de la conductividad proporciona información acerca de la productividad primaria y descomposición de la materia orgánica, e igualmente contribuye a la detección de fuentes de contaminación, a la evaluación de la actitud del agua para riego y a la evaluación de la naturaleza geoquímica del terreno (Faña, 2000).
- 4.1.1.8. Turbidez. Es una expresión de la propiedad óptica que origina que la luz se disperse y absorba en vez de transmitirse en línea recta a través de la muestra.

Es producida por materiales en suspensión como arcilla, limo, materia orgánica e inorgánica, organismos planctónicos y demás microorganismos. Incide directamente en la productividad y el flujo de energía dentro del ecosistema, la turbiedad define el grado de opacidad producido en el agua por la materia particulada en suspensión (Roldán, 2003).

Este parámetro tiene una gran importancia sanitaria, ya que refleja una aproximación del contenido de materias coloidales, minerales u orgánicas, por lo que puede ser indicio de contaminación.

- 4.1.1.9. Dureza. La dureza del agua está definida por la cantidad de iones de calcio y magnesio presentes en ella, evaluados como carbonato de calcio y magnesio. Las aguas con bajas durezas se denominan blandas y biológicamente son poco productivas, por lo contrario las aguas con dureza elevada son muy productivas (Roldán, 2003).
- 4.1.1.10. Cloruros. La presencia de cloruros en las aguas naturales se atribuye a la disolución de depósitos minerales de sal gema, contaminación proveniente de diversos efluentes de la actividad industrial, aguas excedentarias de riegos agrícolas y sobretodo de las minas de sales potásicas (Roldan y Ramírez, 2008).
- 4.1.1.11. Nitrógeno, nitritos y nitratos. El nitrógeno es un elemento esencial para el crecimiento de algas y causa un aumento en la demanda de oxígeno al ser oxidado por bacterias reduciendo por ende los niveles de este. Las diferentes formas del nitrógeno son importantes en determinar para establecer el tiempo transcurrido desde la polución de un cuerpo de agua (Roldán, 2003).
- 4.1.1.12. Fósforo y fosfatos. El fósforo permite la formación de biomasa, la cual requiere un aumento de la demanda biológica de oxígeno para su oxidación aerobia, además de los procesos de eutrofización y consecuentemente crecimiento de fitoplancton.

En forma de ortofosfato es nutriente de organismos fotosintetizadores y por tanto, un componente limitante para el desarrollo de las comunidades, su determinación es necesaria para estudios de polución de ríos, así como en procesos químicos y biológicos de purificación y tratamiento de aguas (Roldán, 2003).

4.1.1.13. Sólidos suspendidos. Los sólidos suspendidos, tales como limo, arena y virus, son generalmente responsables de impurezas visibles. La materia suspendida consiste en partículas muy pequeñas, que no se pueden quitar por medio de deposición.

- 4.1.1.14. Sólidos totales. Se define el contenido de sólidos totales como la materia que se obtiene como residuo después de someter el agua a un proceso de evaporación entre 103-105°C. Los sólidos totales incluyen disueltos y suspendidos, los sólidos disueltos son aquellos que quedan después del secado de una muestra de agua a 103-105°C previa filtración de las partículas mayores a 1.2 μm (Metcalf y Heddy, 1981).
- 4.1.1.15. Coliformes totales y fecales. El análisis bacteriológico es vital en la prevención de epidemias como resultado de la contaminación de agua, el ensayo se basa en que todas las aguas contaminadas por aguas residuales son potencialmente peligrosas, por tanto, en control sanitario se realiza para determinar la presencia de contaminación fecal. La determinación de la presencia del grupo coliformes se constituye en un indicio de polución así como la eficiencia y la purificación y potabilidad del agua (Roldán, 2003).

4.2. ÍNDICE DE CALIDAD DE AGUA (ICA).

Un índice de calidad de agua consiste básicamente en una expresión simple de una combinación más o menos compleja de un número de parámetros, el cual sirve como representación de la calidad del agua. El índice puede ser representado por un número, un rango, una descripción verbal, un símbolo o incluso, un color (Fernández et al., 2003). Si el diseño del ICA es adecuado, el valor arrojado puede ser representativo e indicativo del nivel de contaminación y comparable con otros para enmarcar rangos y detectar tendencias. Estos índices facilitan el manejo de datos, evitan que las fluctuaciones en las mediciones invisibilicen las tendencias ambientales y permiten comunicar, en forma simple y veraz, la condición del agua para un uso deseado o efectuar comparaciones temporales y espaciales entre cuerpos de agua (House, 1990; Alberti y Parker, 1991). Por lo tanto, resultan útiles o accesibles para las autoridades políticas y el público en general (Pérez y Rodríguez, 2008).

El Índice de Calidad Ambiental (ICA) o WQI por sus siglas en inglés (Water Quality Index) mide la calidad fisicoquímica del agua en una escala de 0 a 100 (Tabla 4-1), donde a mayor valor mejor es la calidad del recurso, este valor se refiere principalmente para potabilización. Es el índice de uso más extensivo en los trabajos de este tipo a nivel mundial con ciertas restricciones en Europa y fue creado por la NSF (National Sanitation Foundation), entidad gubernamental de los Estados Unidos. Para su empleo se toma en cuenta los valores de nueve variables: oxígeno disuelto, coliformes fecales, pH, DQO, temperatura del agua fósforo total, nitratos, turbiedad y sólidos totales reunidos en una suma lineal ponderada.

Tabla 4-1. Valores de clasificación de Calidad del agua según el índice ICA del humedal La Moya de Enrique, Ambalema-Tolima.

CALIDAD	RANGO	COLOR
Excelente	91-100	
Buena	71-90	
Media	51-70	
Mala	26-50	
Muy mala	0-25	

Fuente: Adaptado de Ramírez y Viña (1998)

4.3. METODOLOGÍA

- 4.3.1. Métodos de campo. Se registró in situ la temperatura del agua, también se colectaron muestras para evaluar otros parámetros ex situ:
- 4.3.1.1. Parámetros fisicoquímicos. Las muestras fueron colectadas en frascos plásticos con capacidad de 1000 ml, superficialmente y en contra corriente. Fueron debidamente rotuladas y preservadas para su transporte a la Universidad del Tolima (Figura 4-1).
- 4.3.1.2. Parámetros bacteriológicos. Se tomaron las muestras de agua en frascos de vidrio esterilizados con capacidad para 600 ml, superficialmente y en contra corriente. Fueron debidamente rotuladas y preservadas para su transporte a la Universidad del Tolima (Figura 4-1).
- 4.3.2. Métodos de laboratorio. La evaluación de los parámetros fisicoquímicos y bacteriológicos fue realizada en el Laboratorio de Servicios de Extensión en Análisis Químico LASEREX (Universidad del Tolima); donde se determinaron Coliformes Fecales (UFC/100 ml) y Coliformes Totales (UFC/100 ml) y otros parámetros como: pH (Unidades de pH), Conductividad Eléctrica (μS/cm), Oxígeno Disuelto (mgO₂/L), Porcentaje de Saturación de Oxígeno (% SAT O₂), Turbiedad (NTU), Alcalinidad Total y Dureza (mgCaCO₃/L), Cloruros (mg CI/L), Nitratos (mgNO₃/L), Fosfatos (mg PO₄/L), Fósforo total (mg P/L), Sólidos suspendidos y Sólidos Totales (mg/L), DBO5 y DQO (mgO₂/L).

Figura 4-1. Medición de variables fisicoquímicas y toma de muestras *in situ* en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

4.4. ANÁLISIS DE RESULTADOS

Se registró un pH del agua de 6.99 unidades, lo cual coincide con los valores registrados por Roldán y Ramírez (2008), para sistemas lénticos en las partes bajas tropicales. La conductividad eléctrica registró un valor de 189.5 µS/cm, en los cuerpos de agua lénticos presentan altos valores de este parámetro, pues recoge la mayor escorrentía, incrementando el contenido de iones en el agua (Tabla 4-2).

El valor del oxígeno disuelto fue 7.7 mg O_2/L , este parámetro constituye uno de los elementos de mayor importancia en los ecosistemas acuáticos, ya que su presencia y concentración determina las especies, de acuerdo a su tolerancia y rango de adaptación, estableciendo la estructura y funcionamiento biótico de estos sistemas (Ramírez y Viña, 1998).

Tabla 4-2. Resultado de los parámetros fisicoquímicos y bacteriológicos evaluados en el humedal La Moya de Enrique, Ambalema-Tolima.

Parámetro	Unidades	Humedal La Moya de Enrique
Temperatura ambiente	°C	31
Temperatura agua	°C	27
рН	Unidades	6.99
Conductividad eléctrica	μS/cm	189.5

Parámetro	Unidades	Humedal La Moya de Enrique
Oxígeno disuelto.	mg O ₂ /L	5.56
% Saturación de oxígeno	%	73.8
Turbiedad	UNT	20.7
Alcalinidad Total	mg CaCO3/L	61
Dureza	mg CaCO ₃ /L	6.1
Cloruros	mg Cl/L	13.4
Nitratos	mg NO₃/L	0.3
Fosfatos	mg PO4/L	0.15
Fosforo total	mg P/l	0.05
Solidos Suspendidos	mg/L	55
Solidos Totales	mg/L	248
DBO ₅	mgO ₂ /L	7.4
DQO	mgO ₂ /L	94.9
Coliformes. Totales	Colif/100ml	21000
Coliformes Fecales	Colif/100ml	1458

Fuente: GIZ (2013)

La turbiedad incide directamente en la productividad y el flujo de energía dentro del ecosistema (Roldan, 1992), el humedal registró un valor de turbiedad de 20.7 UNT. Así mismo, registró un valor de sólidos totales de 248 mg/L y de 55 mg/L para sólidos suspendidos. La DBO $_5$ registró un valor de 7.4 mgO $_2$ /L registrando una carga de materia orgánica media (Roldán y Ramírez, 2008), mientras que el valor de la DQO fue 94.9 mgO $_2$ /L, siendo un valor alto que puede contribuir a la disminución de la capacidad de depuración de las fuentes hídricas, disminución del oxígeno disuelto, salinización de los suelos, y pérdida de la biodiversidad acuática y calidad del uso (Beltrán y Trujillo, 1999).

En las zonas bajas el valor de los nutrientes aumenta considerablemente, por el arrastre de los sedimentos a causa de las lluvias en los suelos erosionados y del vertimiento de contaminantes domésticos e industriales (Roldán y Ramírez, 2008). El humedal registró un valor de nitratos de $0.3 \, \text{mg} \, \text{NO}_3/\text{L}$ y de fosfatos de $0.15 \, \text{mg} \, \text{PO}_4/\text{L}$.

Los cloruros en el agua están representados por lo regular en forma de cloruro de sodio, por lo tanto, estos expresan en gran parte la salinidad (Roldán y Ramírez, 2008); el humedal registró un valor de alcalinidad de 61 mg CaCO $_3$ /L y de dureza de 6.1 mg CaCO $_3$ /L.

Así mismo, el humedal registró un valor de 21000 col/100ml de coliformes totales y 1458 col/100ml de coliformes fecales, constituyendo un valor alto. Estas bacterias son más resistentes que las bacterias patógenas; por ello, sus bajos

valores en el agua son un indicativo de que bacteriológicamente segura para la salud humana, caso contrario a lo registrado en La Moya de Enrique (Roldán y Ramírez, 2008).

El índice de calidad de agua ICA señala que el humedal La Moya de Enrique registró una calidad Media (Tabla 4-3) indicando procesos de intervención antrópica, que pueden poner en riesgo el establecimiento de la fauna y flora acuática. Por lo tanto, se hace necesario diseñar estrategias de conservación que permitan mitigar esta intervención, para lograr mejorar y mantener una buena calidad del agua.

Tabla 4-3. Índice de calidad de agua (ICA) para el humedal La Moya de Enrique, Ambalema-Tolima.

HUMEDAL	ICA	CALIDAD
La Moya de Enrique	70	MEDIA

Fuente: GIZ (2013)

CAPÍTULO 5. VALORES DE USO Y SERVICIOS ECOSISTÉMICOS DEL HUMEDAL

5. VALORES DE USO Y SERVICIOS ECOSISTÉMICOS DEL HUMEDAL

5.1. INTRODUCCIÓN

Las áreas protegidas en el marco de la protección del medio ambiente, son un componente fundamental para el bienestar de las comunidades biológicas y humanas. Por lo cual, la interacción ambiental, social, económica y cultural que generan estos ecosistemas sensibles, repercuten directamente en la calidad de vida de los actores comunitarios (Cadena-Marín, 2016). En este sentido es importante profundizar en la necesidad de priorizar en aspectos fundamentales para la creación de tejido social, desde la investigación, sensibilización ambiental y generación de estrategias sostenibles de conservación.

Los humedales, son de los ecosistemas más productivos de la tierra (Barbier, 1997). Representando valiosos refugios de biodiversidad, prestando innumerables servicios a la comunidad y desempeñando funciones en los ciclos hidrológicos y químicos, así como en las extensas cadenas tróficas (Barbier, 1997). Estos servicios ecosistémicos, definidos como las contribuciones directas e indirectas de los ecosistemas al bienestar humano, han sufrido profundas transformaciones ambientales a través del tiempo, viéndose reflejadas en la disminución del área del cuerpo de agua, modificaciones en sus coberturas vegetales con el consecuente impacto en la biodiversidad y por ende, en la sostenibilidad (Fisher, 2010; Salazar-Suaza, 2020).

Estos impactos negativos, se deben principalmente a diversas actividades antrópicas que se realizan entorno a estos cuerpos de agua, las cuales se presentan debido en parte al desconocimiento de la importancia ecológica de estos ecosistemas, lo que se intensifica por la falta de gestión de las instituciones responsables, deficiencia en las actividades de recuperación y conservación y escasas actividades de extensión a la comunidad que permita su apropiación contribuyendo al mantenimiento de este ecosistema (Guzmán, 2011).

Es de importancia conocer y comprender de manera directa los vínculos y percepciones establecidos por la comunidad de la zona en estudio con los humedales y las zonas aledañas, con la finalidad de identificar los valores e intereses tanto individuales como colectivos respecto a las acciones de conservación, conduciendo a respuestas colectivas en materia de gestión y conservación de la naturaleza, en las distintas esferas de gobernanza (Fundación Futuro Latinoamericano [FFLA], 2015). La identificación de estos componentes permite garantizar la sostenibilidad y conservación del patrimonio natural a perpetuidad en espacio y tiempo con consecuencias profundas de

mejoramiento en la calidad de vida de la población y la sostenibilidad de las economías (Gutiérrez, 2014).

5.2. METODOLOGÍA

La ruta metodológica empleada en el presente ajuste del plan de manejo ambiental para el humedal La Moya de Enrique en el departamento del Tolima, se llevó a cabo mediante la aplicación de una encuesta semiestructurada de 22 preguntas (Anexo 5-1) a 43 pobladores en el área cercana al humedal La Moya de Enrique, en el mes de mayo del 2022 (Figura 5-1). Las encuestas se realizaron mediante un proceso participativo para la identificación y caracterización de los servicios ecosistémicos, de manera tal que se tuvieron en cuenta diversos aspectos tales como: identidad cultural, conocimiento del área, percepción de importancia y valor del ecosistema de humedal, presencia de instituciones influyentes para la conservación del mismo, variables de comportamiento ambiental y variables socio-económicas.

Figura 5-1. Participación de la comunidad en la encuesta de servicios ecosistémicos en el humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

A partir de sus respuestas se identificaron los valores de uso y servicios ecosistémicos priorizados; permitiendo evidenciar la importancia de definir ejes de actuación que permita integrar a la comunidad, desarrollando una sinergia entre los criterios ecológicos y los del territorio con el fin de promover la responsabilidad social de los pobladores del área de estudio en materia de protección de estos humedales.

5.3. RESULTADOS Y DISCUSIÓN

Se realizaron 31 encuestas en total, 30 (96.77%) de ellas corresponden a residentes de las veredas El Chorrillo, Mangón y Tajo Medio, y una (3.22%) de la zona urbana de Ambalema. De los pobladores encuestados, 28 (90.32%) reconocen su identidad socio-territorial, vínculos de pertenencia y arraigo familiar a esta zona geográfica, ya que sus padres o abuelos pertenecen a ésta; mientras que dos (6.45%) pobladores de los tres restantes son de otras regiones del departamento del Tolima y uno (3.22%) es proveniente de Cundinamarca.

Respecto al género de las personas encuestadas 22 (70.96%) y nueve (29.03%) pertenecen al género masculino y femenino, respectivamente. El rango de edad de la población encuestada oscila entre 26 y 80 años, encontrándose en mayor proporción en el rango de 70 a 79 años (29.03%), seguido por la población que se encuentra en el rango de 50 a 59 años (25.80%) y siendo el de menor proporción el rango comprendido entre los 20 a 29 años (3.22%).

De acuerdo a las encuestas realizadas, se hace evidente el bajo nivel de estudios en la población encuestada; en donde se puede identificar que solo una (3.22%) persona tiene estudios a nivel de tecnología y una (3.22%) a nivel de postgradomaestría, el restante de la población solo accedió a estudios a nivel de primaria y bachillerato, 19 (61.29%) y seis (19.35%) respectivamente. Finalmente, cuatro (12.90%) personas, no accedieron a la educación a ningún nivel. Este comportamiento a nivel educativo en donde se presentan alta tasa de analfabetismo y deserción escolar ha sido reportado previamente en estudios similares en áreas aledañas a estos ecosistemas (Vilardy, 2014; Cadena-Marín, 2016).

La gran mayoría de las personas encuestadas se identifican como pescadores (74.19%), si bien es cierto es la principal actividad que llevan a cabo para suplir las necesidades básicas también la alternan como obreros cuando se presenta la posibilidad de hacerlo. Esta actividad, esta seguida por pobladores que se identifican como obreros (9.67%), seguido de mujeres ama de casa (6.45%) y con la misma participación personas que se dedican a la pesca y agricultura de manera paralela y en menor proporción (3.22%) persona que labora como arquitecta desarrollando además actividades de ganadería y agricultura. Estas actividades realizadas por las personas encuestadas, representan ingresos inferiores a \$830.000 mensuales para el 96.77% de ellas, el 3.22% del total de las personas encuestadas se reservaron el derecho de responder a esta pregunta.

El humedal La Moya de Enrique, representa un recurso natural de invaluable importancia y valor para las personas que tienen sus hogares en el área de influencia. Este ecosistema ha generado a lo largo de los años, vínculos que se ven reflejados en diversas emociones, sensaciones, ideas y elementos (Figura 5-2). En la siguiente representación gráfica, se observa la percepción de

importancia y valor del humedal La Moya de Enrique, las cuales están relacionadas con servicios de provisión, culturales, de apoyo y de regulación. Se evidencia que las más destacables para las personas encuestadas en el presente estudio son: felicidad, naturaleza, tranquilidad, recuerdos y animales.

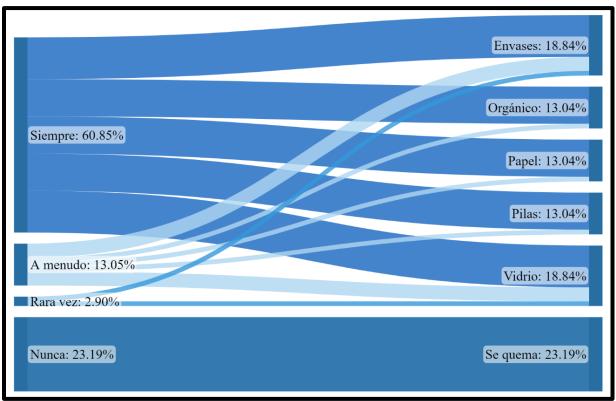
Figura 5-2. Ideas, elementos, emociones y sensaciones asociadas a la presencia del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2022)

Respecto a la participación de la comunidad encuestada en relación a las asociaciones existentes en la región, el 35%, hacen parte de asociaciones de trabajo y social, entre las que se destacan: Asogropecho, asociación de apoyo de desarrollo de microempresas, junta de acción comunal y acueducto. Mientras que el 80.64%, no son miembros de ningún tipo de asociación. Al cuestionarles acerca de la importancia para ellos de involucrarse en acciones en pro de la conservación, la gran mayoría expresa su interés en participar de estas actividades.

Sin embargo, a la fecha el 96.77% de los lugareños encuestados no realizan ningún tipo de práctica en pro de la conservación de este ecosistema y

solamente el 3.22%, correspondiente a una de las personas encuestadas está relacionada con actividades de conservación; su contribución se enfoca en la reforestación de zonas aledañas al humedal La Moya de Enrique con la plantación de especies vegetales nativas, aprovechando su conocimiento y experiencia en el diseño paisajístico. Cabe resaltar que esta persona se ve directamente beneficiada de los servicios ecosistémicos que ofrece el humedal La Moya de Enrique ya que es la propietaria de la finca Montealegre, lugar en donde se encuentra el cuerpo de agua.

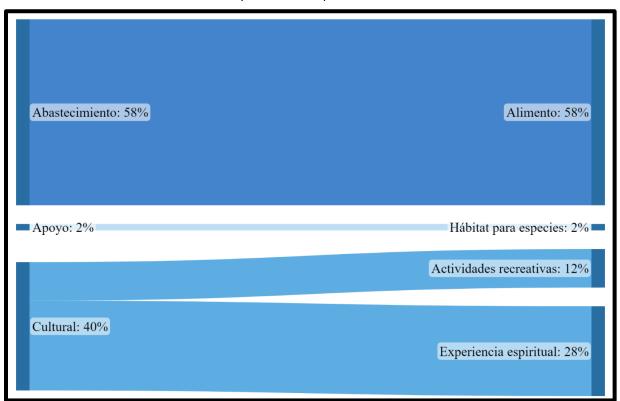

Desde los hogares, es posible implementar acciones básicas que generen un impacto positivo en la conservación y cuidado del medio ambiente, una de ellas es la separación de residuos. Al aplicar esta práctica, se contribuye a la reducción del consumo de recursos naturales renovables y no renovables destinados a la producción industrial, así como también se contribuye a la reducción de gases que generan el calentamiento global y el cambio climático, entre otros. El 60.85% de la población participante en el presente estudio siempre separa los residuos, principalmente: envases, vidrio, orgánico, papel y pilas. En una menor frecuencia, los pobladores separan los residuos a menudo (13.05%) y rara vez (2.90%), separando principalmente vidrio y envases; por último, el 23.19% de las personas encuestadas nunca separan los residuos, los cuales siempre son quemados (Figura 5-3). Este grupo de personas encuestadas en el presente estudio, quienes nunca llevan a cabo la separación de residuos, exponen que las veredas aledañas al complejo de humedales del municipio de Ambalema, no cuentan con servicio recolector de residuos.

Los bienes y servicios que el humedal provee, le permiten a la comunidad recibir numerosos beneficios que preservan su modo de vida, tales como la pesca, el agua, el clima, entre otros. La pérdida y degradación de este ecosistema de humedal deteriora la salud y el bienestar de los individuos y de la comunidad, disminuyendo las posibilidades de desarrollo. Los servicios que ofrece La Moya de Enrique, son vitales como se mencionó anteriormente para el bienestar humano y la mitigación de la pobreza; el uso sostenible y, cuando es necesaria, la restauración de estos servicios puede con frecuencia contribuir a que los pobladores satisfagan sus necesidades básicas como es la alimentación.

Entre las personas encuestadas para el presente estudio el 90.32%, consideran que este humedal influye de manera positiva a su bienestar; mientras que el 6.45% considera que influyen poco y el 3.22%, manifiesta que este ecosistema no influye en nada. La gran mayoría de los pobladores encuestados, argumentan que la influencia positiva del humedal La Moya de Enrique se ha visto totalmente limitada debido a que se encuentra en el predio privado "Finca Montealegre" en donde no hay libre acceso para disfrutar de los distintos servicios que este humedal brindaba varios años atrás. Entre los principales beneficios destacados por la población de los cuales gozaban anteriormente se destacan: la pesca, el

clima y el agua, servicios que contribuían anteriormente de manera directa para su subsistir (Figura 5-4).

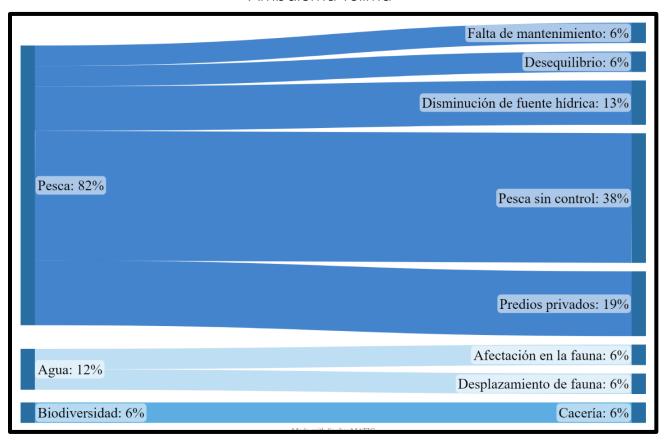
Figura 5-3. Frecuencia de separación de residuos sólidos por los pobladores encuestados en el humedal La Moya de Enrique, Ambalema-Tolima.


Fuente: GIZ (2022)

Los servicios que brindan los ecosistemas se pueden agrupar en servicios de abastecimiento, de regulación, de apoyo y culturales (FAO, 2022). De acuerdo a las respuestas de los pobladores encuestados se observa que el principal beneficio que era percibido se basada en la provisión de alimentos (58%), contemplado en el servicio de abastecimiento, seguido por el servicio cultural (40%) para usar este ecosistema para llevar a cabo actividades recreativas (12%) y como lugar de experiencia espiritual (28%). En una menor proporción (2%), relaciona los beneficios como servicios de apoyo, al proporcionar espacios vitales para las plantas o animales y de esta manera conservar la diversidad (Figura 5-5).

Figura 5-4. Beneficios percibidos por los pobladores circundantes al humedal La Moya de Enrique, Ambalema-Tolima.

Los diversos servicios ofrecidos por el humedal La Moya de Enrique, se han visto afectados con el pasar del tiempo. Es preocupante la percepción de los lugareños, ya que el 80.64% de ellos, considera que la situación del humedal ha empeorado debido a que nadie se encarga de su cuidado. De acuerdo al estudio anterior de plan de manejo ambiental del humedal La Moya de Enrique, se identifica una interacción entre los factores productivos y culturales de la comunidad, con el complejo de humedales pertenecientes al municipio de Ambalema, en especial lo que concierne a la vereda El Chorrillo. Esta vereda, años atrás fue reconocida por su tradición pesquera, gracias a que esta serie de humedales suministraban un gran número de peces durante buena parte del año (GIZ y CORTOLIMA, 2013).


Figura 5-5. Servicios ecosistémicos identificados por los pobladores en el humedal La Moya de Enrique, Ambalema-Tolima.

En el presente estudio, es evidente que uno de los principales beneficios más perjudicados al desmejorar las condiciones ambientales, está la pesca (82%) que se ha visto afectada principalmente por la pesca sin control (38%), por la restricción al cuerpo de agua al encontrarse en predio privado (19%), disminución de la fuente hídrica (13%), y en menor proporción por la falta de mantenimiento (Figura 5-6). En una menor proporción, consideran que los beneficios ofrecidos por la fuente hídrica (12%) tiene una repercusión directa en la fauna que habita en este ecosistema ya que la disminución del espejo de agua ejerce presión para que ciertas especies se desplacen a otros lugares. La biodiversidad es otro de los beneficios que se han visto perjudicados debido a la cacería de ciertas especies.

La conciencia y reflexión por parte de la mayoría de los pobladores al mirar atrás y ver las afectaciones y disminución de bienes y servicios ofrecidos por el humedal La Moya de Enrique, los lleva a un replanteamiento de la situación y de esta manera el 93.54% de los encuestados manifiestan su disposición a contribuir en proyectos que se generen en torno a la recuperación/conservación de este humedal que años atrás fue motivo de orgullo y reconocimiento para su región.

El resto de la población encuestada correspondiente al 6.45%, expresan que no contribuirían para la conservación, debido a que consideran que estas acciones de conservación deben de darse por parte de la entidad ambiental y la propietaria de la finca Montealegre, en la cual se encuentra localizado La Moya de Enrique.

Figura 5-6. Beneficios más perjudicados del humedal La Moya de Enrique, Ambalema-Tolima

Fuente: GIZ (2022)

La contribución por parte de los lugareños a la conservación del humedal, podría darse principalmente mediante el apoyo al mantenimiento, dentro de este aspecto se contempló a los pobladores que expresaron su contribución a la conservación mediante su propio trabajo (48%). Seguidamente la educación ambiental (46%), resulta como otra de las acciones dispuestas a realizar con la finalidad de contribuir a la conservación del humedal; este planteamiento estaría dado por la previa capacitación de las entidades a líderes de la comunidad para que posteriormente sean los multiplicadores de estos conocimientos.

En una menor cantidad, la contribución a la conservación del humedal La Moya de Enrique estaría dada por la divulgación (4%), la cual fue planteada para que se creen espacios en donde la población mayor pueda interactuar con las generaciones más jóvenes y compartir las experiencias del pasado en donde se veía reflejado en una mayor medida diversos servicios ecosistémicos que brindaban el sustento diario a varios pobladores de las veredas adyacentes al humedal. Finalmente, el 2% de los encuestados consideran que debería de haber una donación económica por parte de las personas que se ven directamente beneficiadas por La Moya de Enrique (Figura 5-7).

Educación ambiental 46%

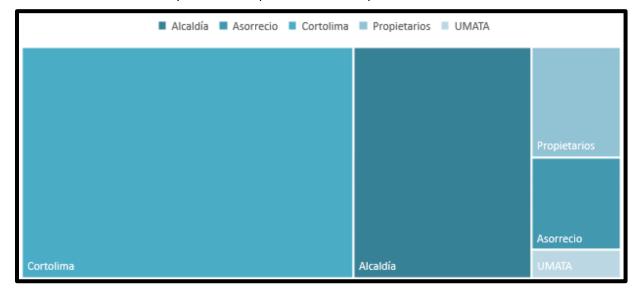
Otros 6%

Apoyo al mantenimiento 48%

Divulgación 4%

Donación económica 2%

Figura 5-7. Principales acciones de contribución a favor de la conservación del humedal La Moya de Enrique del municipio de Ambalema.


Fuente: GIZ (2022)

Por otra parte, el acercamiento con la comunidad y la aplicación de la encuesta permitió conocer la percepción e ideas de los pobladores respecto a los actores que han estado o deberían de estar involucrados en la conservación del humedal La Moya de Enrique. Los principales actores identificados por la población como responsables de gestionar y coordinar las actividades de conservación se encuentran CORTOLIMA, la alcaldía del municipio de Ambalema y en menor proporción propietarios, Asorrecio (asociación de usuarios del distrito de adecuación de tierras del río recio) y UMATA (Unidades Municipales de Asistencia Técnica Agropecuaria) (Figura 5-8).

Si bien es cierto, estos son los actores identificados por la comunidad como responsables de implementar acciones para la conservación del cuerpo de

agua, coinciden que ninguno de estos ha hecho presencia en el pasado para tomar acciones con tal fin. Este espacio, conllevó para que algunos de los lugareños dieran a conocer la importancia de generar espacios con los distintos actores para intercambio de experiencias, ideas y conocimientos que conlleve a un tejido social en pro de la apropiación y formulación de soluciones conjuntas que permita mejorar la gestión socio-ecológica.

Figura 5-8. Percepción por parte de la población de los grupos u organizaciones que más influyen y/o deciden en la conservación del humedal La Moya de Enrique del municipio de Ambalema.

Fuente: GIZ (2022)

Entre las acciones que se consideran de mayor importancia para el futuro del humedal La Moya de Enrique, se encuentra mejorar las condiciones de vida de los pobladores aledaños a las áreas de conservación (24%), seguido por la presencia de instituciones (24%); otra de las acciones que los pobladores dan un alto grado de importancia, es que se brinden subvenciones para el mantenimiento (23%), incentivar que nuevas generaciones se dediquen a la conservación (19%). En un menor porcentaje, se seleccionó la opción de que exista una legislación que apoye al mantenimiento de las áreas protegidas-en este punto, algunos de los encuestados expresaron que más allá de la existencia de una legislación es cumplir las que ya existen (Figura 5-9).

5.4. CONCLUSIONES

El compromiso activo por parte de los pobladores, actores ambientales, entidades a nivel local y propietarios de fincas directamente beneficiadas por este ecosistema, son indispensables para diseñar estrategias con la finalidad de recuperar y conservar los servicios ecosistémicos brindados en el pasado por el humedal La Moya de Enrique, ofreciendo nuevamente recursos que permitan la subsistencia, seguridad y patrimonio local de los habitantes de las veredas cercanas.

Turismo

Beneficios por conservación

Más legislación

Incentivar nuevas generaciones

Subvenciones

Presencia de institucionalidad

Mejor condiciones de vida

0% 5% 10% 15% 20% 25%

Figura 5-9. Importancia de las distintas acciones a implementar para el futuro del humedal La Moya de Enrique del municipio de Ambalema.

Fuente: GIZ (2022)

Por parte de los pobladores que se veían anteriormente beneficiados, principalmente por la pesca para obtener el sustento diario; se eleva la solicitud a través del presente estudio, para que se lleguen a acuerdos con los propietarios de fincas en donde se ubican los humedales de la vereda El Chorrillo, con la finalidad de poder acceder a estos recursos naturales y disfrutar de los servicios ecosistémicos.

Se sugiere por parte de la comunidad realizar jornadas para conocer todos los servicios ecosistémicos que ofrece el humedal La Moya de Enrique. Así mismo, existe disposición por parte de los pobladores de participar de jornadas que

permitan la recuperación de este ecosistema, siempre y cuando se logren acuerdos con los propietarios de las fincas que han restringido el acceso al cuerpo de agua.

CAPÍTULO 6. COMPONENTE AMBIENTAL

6. COMPONENTE AMBIENTAL

6.1. INTRODUCCIÓN

A partir de la definición de humedal adoptada por Colombia en el marco de la Convención Ramsar, desde el Instituto Humboldt, con la participación de IDEAM, IGAC, Ministerio de Ambiente y Desarrollo Sostenible y la academia, se define operativamente a un humedal cómo "ecosistemas que, debido a condiciones geomorfológicas e hidrológicas, presentan acumulación de agua (temporal o permanentemente), dando lugar a un tipo característico de suelo y a organismos adaptados a estas condiciones, estableciendo así, dinámicas acopladas e interactuantes con flujos económicos y socioculturales que operan alrededor y a distintas escalas" (Sarmiento, 2016), permitiendo encontrar una orientación clara para reconocer elementos hidrológicos, geomorfológicos, edafológicos y de vegetación que facilitan la delimitación del humedal, además de permitir analizar el rol de las instituciones y de la sociedad civil en su funcionamiento, así como los servicios ecosistémicos de los cuales depende el bienestar de las comunidades allí presentes (Cortés-Duque y Estupiñan-Suárez, 2016).

Estos ecosistemas hacen parte de las áreas más ricas en biodiversidad, por lo que proporcionan multiplicidad de hábitats para especies animales y vegetales, y a su vez, ofrecen una variada gama de servicios ecosistémicos como la filtración de desechos, provisión de agua dulce y regulación del clima, entre otros, que traen diversos beneficios a la sociedad (MEA, 2007; Ten Brink et al., 2012).

La degradación y pérdida de los humedales está asociada de manera directa con los cambios en el uso del suelo, la introducción de especies invasoras, el aumento y desarrollo de infraestructuras y la contaminación; los principales generadores de cambios indirectos incluyen, entre otros, la expansión urbana y el creciente desarrollo económico (MEA, 2005). Además de factores naturales cómo la sedimentación, la desecación, avalanchas, tormentas, actividad volcánica e inundaciones (estacionales/ocasionales) (MMA, 2002).

Los motores de transformación que afectan directamente a estos ecosistemas estratégicos en el país siguen la tendencia mundial. Por esta razón no solo se requiere el reconocimiento del valor de los humedales y del agua, sino también su integración en la toma de decisiones como elemento esencial para garantizar el futuro social, económico y la satisfacción de las necesidades ambientales a partir del uso racional de estos ecosistemas (Ten Brink et al., 2012), ya que se debe tener en cuenta que Colombia cuenta con 30, 781, 149 de hectáreas de humedales (Flórez-Ayala et al., 2015) y más de 88 tipos diferentes entre

humedales marino-costeros, interiores y artificiales, ecosistemas que hacen de Colombia un importante país proveedor de agua (Ricaurte et al., 2015).

Debido a la problemática actual de los humedales de Colombia el Ministerio del Medio Ambiente estableció en el año 2002, la Política para los humedales Interiores de Colombia, a partir de los principios establecidos en la Constitución Política y en las funciones asignadas en la Ley 99 de 1993 relacionadas con la formulación, concertación y adopción de políticas orientadas a regular las condiciones de conservación y manejo de ciénagas, pantanos, lagos, lagunas y demás ecosistemas hídricos continentales.

Esta política nacional de humedales interiores reconoce a estos ecosistemas como estratégicos dentro del ciclo hidrológico y plantea como visión la garantía de la sostenibilidad y conservación de sus recursos hídricos (MMA, 2002), además de plantear la importancia de estos como sistemas socio ecológicos, en los que se reconoce al ser humano y su cultura como parte integral de la biodiversidad allí presente (Política Nacional de Humedales) (Contraloría General de la república, 2011).

Los importantes adelantos sobre el conocimiento de los humedales han permitido integrar elementos clave en las políticas, planes y programas de manejo actuales como el Plan Nacional de Desarrollo 2018-2022 para direccionar medidas de adaptación bajo las perspectivas nacionales de cambio climático (Departamento Nacional de Planeación, 2018) y los compromisos de acción nacional para la conservación y el uso racional de los humedales, establecidos con la Convención de Humedales de Importancia Internacional Ramsar, adaptándose bajo el objetivo general de la política nacional para humedales interiores de Colombia "Propender por la conservación y el uso sostenible de los humedales interiores de Colombia con el fin de mantener y obtener beneficios ecológicos, económicos y socioculturales, como parte integral del desarrollo del País" (MMA, 2002).

6.2. METODOLOGÍA

Los procesos de afectación humana en los humedales, no son independientes de la dinámica natural de estos sistemas (Carpenter y Cottingham, 1998). Esta debe verse como una perturbación que actúa sobre la dinámica natural del sistema, y cuyo efecto depende de la magnitud, intensidad y tasa de recurrencia de la misma (aspectos externos), como también del estado del sistema y de su capacidad de retornar al estado de pre-perturbación o resiliencia (aspectos internos). En este sentido, los conflictos entre las actividades humanas y la conservación o uso sustentable de los humedales se presentan en varios órdenes de magnitud, jerárquicamente organizados (Wayne-Nelson y Wéller, 1984). Entendiéndose como la transformación total del humedal (orden

de magnitud 1) y factores de perturbación severa que corresponden al orden de magnitud 2. Por lo anterior, se realizó un análisis de transformación del humedal con base en las siguientes características:

- 6.2.1. Transformación total (Orden de magnitud 1). La transformación total de un humedal, consiste en la desaparición total o el cambio fundamental de las características del sistema, de tal manera que deja de considerarse humedal, según las definiciones usadas. Los cambios pueden ser en los atributos físicos, químicos o biológicos. Entre las actividades humanas que presentan un conflicto de este tipo se encuentran:
- **Reclamación de tierras.** Con fines agrícolas o ganaderos e implica la apropiación de espacios públicos y la expedición de títulos de propiedad, previa alteración de los niveles de agua o desplazamiento de los límites (Restrepo y Naranjo, 1987).
- Modificación completa de regímenes hidráulicos y reclamación del espacio físico del humedal. El primero se produce en el ámbito de las cuencas de captación de las aguas que alimentan los humedales alterando su dinámica natural por la construcción y operación de obras civiles de regulación hídrica en algunos casos, o por cambios de cobertura vegetal que aumentan la carga de sedimentos o alteran la capacidad de retención de las aguas.

El segundo, se origina para darle un uso diferente al humedal y es una forma frecuente de impacto contundente sobre los humedales especialmente en aquellos situados en las áreas urbanas o suburbanas y realizadas con el fin de ampliar el espacio para el desarrollo de infraestructura urbana, industrial o de recreación (MMA, 2002).

• Introducción o trasplante de especies invasoras. Con el fin de mejorar la oferta de proteína a través del cultivo de estanques o con fines de manejo (aumento en la retención de nutrientes o especies herbívoras para controlar "malezas acuáticas"), se han introducido o trasplantado especies invasoras que terminan liberándose al medio natural (MMA, 2002).

- 6.2.2. Perturbación severa (Orden de magnitud 2). Se refiere a las perturbaciones que se producen por cambios en los atributos físicos, químicos o biológicos de áreas del humedal, que alteran algunas de sus funciones ambientales o valores sociales, pero que le permiten seguir funcionando como humedal. Las actividades humanas que pueden ocasionar este tipo de cambios son:
- Control de inundaciones. Trata de perturbaciones que cambian los ciclos hidrológicos en el humedal (caudal, pulso, ritmo y frecuencia) produciendo alteraciones en los ciclos biogeoquímicos y biológicos. Se producen mediante la construcción de obras civiles de "protección" para la contención, conducción o evacuación de las aguas (canales, diques o terraplenes) (MMA, 2002).
- **Contaminación.** Ocasiona cambios severos en la calidad de las aguas (química o por cargas de sólidos), lo cual desencadena cambios biológicos.
- **Canalizaciones.** Son alteraciones de los flujos superficiales de agua y su conducción a los cauces principales o secundarios. De esta manera, se altera la topografía y el régimen hídrico del humedal (MMA, 2002).
- **Urbanización.** Esta alteración severa como consecuencia del desarrollo urbano, industrial y de infraestructura de recreación puede producirse en zonas críticas (vegetación riparia, transición con sistemas terrestres), por lo tanto, se afecta la dinámica regular del humedal (MMA, 2002).
- Remoción de sedimentos o vegetación. Puede ocasionar cambios severos en el funcionamiento hidrológico y la biocenosis de los humedales, si se produce en la mayoría del área del humedal. Esta alteración se presenta por el mantenimiento de valores como la navegabilidad o por la extracción de materiales en los mismos (actividades mineras) (MMA, 2002).
- Sobreexplotación de recursos biológicos. Se produce por el exceso de uso de especies de fauna mediante la caza o la pesca, la recolección de nidos, la extracción de materiales para usos domésticos, industriales, locales (artesanías) o para el autoconsumo (leña o materiales de construcción) (MMA, 2002).
- Represamiento o inundación permanente. Tiene su origen en actividades de fomento piscícola, como la construcción de estanques para acuicultura, el

represamiento de los flujos de agua en los pantanos para la creación de lagos con los mismos fines de recreación, lo que finalmente, origina nuevos procesos ecológicos que pueden incluirse en el tipo de procesos típicos de los humedales (MMA, 2002).

Los anteriores aspectos son fundamentales para la formulación de la Política Nacional de Humedales, puesto que la magnitud de las perturbaciones y la capacidad de resiliencia o respuesta de los mismos, están inversamente ligadas con las oportunidades de conservación, manejo y restauración.

6.3. CLASIFICACIÓN DE IMPACTOS

Se reconocen niveles jerárquicos o escalas espaciales de manifestación de los fenómenos ecosistémicos, que van desde el paisaje (cuenca hidrográfica), hasta unidades bióticas (comunidades o especies). La gestión de ecosistemas implica además la concurrencia en estos espacios de los actores y sectores involucrados, de tal suerte que los procesos de planificación o las evaluaciones ambientales de proyectos que los afectan, deben basarse en criterios múltiples (MMA, 2002).

De acuerdo con lo anterior, se han identificado diversos indicadores que permitirán reflejar el estado actual del humedal La Moya de Enrique y establecer el plan de acción para su conservación y manejo (Tabla 6-1).

Tabla 6-1. Propuesta general de atributos indicadores de estado y gestión para humedales, centrados en su biodiversidad asociada (MMA, 2002).

Nivel	el Atributos Indicadores de Estado		Indicadores Impacto de Gestión
Continental Nacional	Procesos ecológicos evolutivos y ambientales globales.	Superficie (%) de unidades biogeográficas de ecosistemas de agua dulce no perturbados por factores de afectación (Transformación total o perturbación severa)	Diversidad ecosistémica y biogeográfica en el sistema de áreas protegidas o de manejo especial (% de humedales). Cantidad (%) de diversidad ecosistémica al interior de las áreas protegidas o especiales. Cambios en el índice de riesgo por gestión de ecosistemas.
Regional Paisaje	Diversidad ecosistémica. Número y proporción de tipos o unidades funcionales de los ecosistemas de	Índice de diversidad e integridad ecosistémica. Índice de riesgo. Índice de fragmentación. Índice de madurez	

Nivel	Atributos	Indicadores de Estado	Indicadores Impacto de Gestión
	humedales. Heterogeneidad y conectividad. Dinámica de formación y regeneración de ecosistemas.	(Proporción de etapas sucesionales en una unidad ecológica).	
Local Comunidad biótica	Diversidad de especies. Riesgo de pérdida de especies amenazadas o en peligro de extinción. Especies exóticas.	Lista de especies amenazadas Riqueza de especies. Índice de diversidad y equitabilidad. Frecuencia de clases tróficas. Número y proporción de especies en categorías especiales. Presencia o abundancia de bioindicadores de estado.	Mantenimiento de las listas de especies por taxa seleccionados. Mantenimiento de riqueza de especies. Mantenimiento o aumento del índice de diversidad. Mantenimiento de frecuencia de clases tróficas indicadoras de estabilidad en el sistema.
Especie/ Población	Dinámica de las poblaciones.	Número de poblaciones o subpoblaciones. Índices de agregación espacial de poblaciones. Número de individuos. Índice de agregación espacial de individuos. Distribución de clases de edad. Tasa interna de crecimiento poblacional.	Mantenimiento o aumento del número de poblaciones o subpoblaciones. Estabilidad o aumento de número de individuos. Mantenimiento o mejoramiento de la distribución de clases de edad. Aumento o estabilidad en la tasa interna de crecimiento poblacional.
Genético	Número y proporciones de alelos. Variabilidad genética	Coeficiente de entrecruzamiento (inbreeding) Tasa de mutación vs Tasa de pérdida.	Disminución del coeficiente de entrecruzamiento (inbreeding) Equilibrio entre tasa de mutación vs Tasa de pérdida.

Fuente: GIZ (2022)

6.3.1. Análisis cualitativo del humedal La Moya de Enrique. A la fecha (2022), una vez caracterizado biológica y socioeconómicamente el humedal La Moya de Enrique, se establecieron los factores de afectación para el cuerpo de agua de acuerdo con lo definido en la Política Nacional de Humedales Interiores para Colombia. En primera medida, el análisis ambiental requirió el estudio de la comunidad biótica del lugar, con evaluaciones de fauna y flora que permitieran establecer sus cambios en el tiempo y espacio.

La identificación y valoración de las actividades potencialmente generadoras de modificaciones al medio que pueden producir algún tipo de impacto e inciden directamente sobre el humedal La Moya de Enrique se evaluaron a través de una matriz cualitativa de impacto ambiental, la cual cuenta con dos entradas que indican las actividades presentes en el área, así como los elementos que pueden ser afectados a partir de ellas. Así, se resaltan las actividades de mayor incidencia, con el fin de establecer programas de manejo para control ambiental (Tabla 6-2). En dicha matriz la presencia de una perturbación se anota con un 1 y la falta de éste como 0.

Tabla 6-22. Matriz cualitativa de impactos observados en el humedal La Moya de Enrique, Ambalema-Tolima.

VARIABLES	Produ pecu			ovech curso			Admin	istración
	1. A g	jua						
Agua superficial permanente	1	0	1	0	0	0	1	0
Agua superficial temporal	1	0	1	0	0	0	1	0
Control de inundaciones	0	0	0	0	0	0	1	0
Canalización	0	0	0	0	0	0	1	0
Represamiento	0	0	0	0	0	0	1	0
	2. Vege	tación						
Vegetación leñosa	1	0	1	0	0	0	1	0
Vegetación herbácea	1	0	1	0	0	0	1	0
Diversidad	1	0	1	0	0	0	1	0
Riqueza fitoplancton	1	0	1	0	0	1	1	0
	3. Fai	Jna						
Riqueza zooplancton	1	0	1	0	0	1	1	0
Riqueza macroinvertebrados acuáticos	1	0	1	0	0	1	1	0

	Producción pecuaria			Aprovechamiento recurso agua			Administración	
VARIABLES								
Riqueza peces	1	0	1	0	0	1	1	0
Riqueza herpetos	1	0	1	0	0	0	1	0
Riqueza aves	1	0	1	0	0	1	1	0
Riqueza mamíferos	1	0	1	0	0	1	1	0
4. Unido	ıdes ambi	entales /	paisaje)				
Suelos expuestos	1	0	1	0	0	0	1	0
Bosques de vega-bosque de galería	1	0	1	0	0	0	1	0
Pastizal	1	0	1	0	0	0	1	0
5. Uso de	5. Uso de la tierra y capacidad de uso							
Producción	0	0	0	0	0	0	1	0
Ecoturismo	0	0	0	0	0	0	1	0

Fuente: GIZ (2022)

6.4. ANÁLISIS DEL COMPONENTE AMBIENTAL

Entre las problemáticas que más afectan la biodiversidad del humedal La Moya de Enrique es la invasión por vegetación que cubre el cuerpo de agua. La vegetación proporciona superficies para la formación de películas bacterianas, facilita la filtración y la adsorción de los constituyentes del agua residual, permite la transferencia de oxígeno a la columna de agua y controla el crecimiento de algas al limitar la penetración de luz solar, sin embargo, se requiere de programas de limpieza para evitar que la vegetación invada por completo la superficie del agua.

La calidad del agua en el humedal La Moya de Enrique es media según el índice de calidad del agua, los coliformes fecales y totales que registraron valores muy altos, lo que permite evidenciar que los procesos de intervención antrópica son un agravante para el ecosistema, así como también la contaminación del agua por material orgánico y materia fecal del ganado, Adicionalmente, el ganado genera compactación del suelo justo en la ronda hídrica del humedal; por lo que se hace necesario hacer una evaluación del origen del incremento de las variables, para lograr mejorar y mantener una buena calidad del agua. Evitar la compactación del suelo, el uso intensivo de tierras aledañas al humedal para actividades ganaderas y el uso del agua para actividad agropecuaria puede

garantizar el mantenimiento o aumento del índice de diversidad y de frecuencia de clases tróficas indicadoras de estabilidad en el sistema.

Se hace necesario realizar monitoreos de las especies de los diferentes grupos faunísticos para evidenciar el mantenimiento de las listas de especies y el estado poblacional de diferentes especies de interés, tales como aves migratorias, mamíferos medianos y grandes, macroinvertebrados bioindicadores del estado de calidad del agua, así como anfibios y reptiles presentes en el humedal.

Entre los beneficios esperados con la implementación del PMA para este humedal se espera:

- Conservar la humedad y el espejo de agua del humedal La Moya de Enrique
- Regular la escorrentía
- Controlar la erosión
- Controlar la propagación de vegetación sobre la superficie del agua
- Consolidar riberas y mantener los bordes como hábitat de fauna silvestre residente o migratoria (anidación, alimento, refugio y reproducción)
- Protección del humedal
- Atracción de insectos y aves silvestres
- Ornamentación por características de floración y colorido
- 6.4.1. Transformación total de un humedal.
- 6.4.1.1. Reclamación de tierras. Las zonas aledañas se usan para actividades ganaderas, el cultivo de arroz y maíz principalmente, teniendo gran impacto sobre el humedal, dado que no existe una barrera para que el ganado, los productos químicos y fertilizantes utilizados en estos cultivos accedan al cuerpo de aqua.
- 6.4.1.2. Modificación completa de regímenes hidráulicos y reclamación del espacio físico del humedal. La dinámica natural del humedal no se ve alterada por la construcción y operación de obras civiles de regulación hídrica, tampoco se evidencian afectaciones por áreas urbanas o suburbanas y obras con el fin de ampliar el espacio para el desarrollo de infraestructura urbana, industrial o de recreación. Sin embargo, en las zonas aledañas al humedal se presentan talas y quemas que afectan gravemente las condiciones del cuerpo de agua.

- 6.4.1.3. Introducción o trasplante de especies invasoras. Se requieren de mayores estudios para evidenciar este tipo de problemáticas en el humedal.
- 6.4.2. Perturbación severa.
- 6.4.2.1. Control de inundaciones. Se requieren de mayores estudios para evidenciar este tipo de problemáticas en el humedal.
- 6.4.2.2. Contaminación. Se requieren de mayores estudios para evidenciar este tipo de problemáticas en el humedal. Así mismo, teniendo en cuenta la presencia de monocultivos de arroz y el uso de fertilizantes, herbicidas y demás productos químicos necesarios para su mantenimiento, es de esperarse que residuos de estos productos lleguen por escorrentía al humedal, por lo cual, se recomienda hacer un análisis fisicoquímico y bacteriológico de sus aguas.

Por otro lado, otro aspecto fundamental que genera contaminación de manera indirecta al área del humedal La Moya de Enrique, es la ausencia de un sistema estructurado de recolección de residuos sólidos en la vereda El Chorrillo. Ante esta falencia, una gran proporción de la población implementa la quema de residuos, lo cual acrecienta la contaminación ambiental, perturbando en cierta medida algunas dinámicas ecológicas.

- 6.4.2.3. Urbanización. No se presentan tensionantes de tipo urbano, industrial ni de infraestructura de recreación dado que el humedal se encuentra en un área privada.
- 6.4.2.4. Sobreexplotación de recursos biológicos. Los pobladores de la región dan a conocer que existen altas presiones sobre las especies de fauna producto principalmente de la cacería, aunque un efecto menor por la recolección de nidos o extracción de materiales para usos domésticos, industrial locales (artesanías) o para el autoconsumo (leña o materiales de construcción).

Con base en esto, es necesario realizar jornadas de educación ambiental e implementar medidas que reduzcan la pérdida de diversidad en la zona a manos de las personas, además se recomiendan más estudios que permitan evidenciar este tipo de problemáticas en el humedal.

6.4.2.5. Represamiento o inundación permanente. No se evidencias construcción de estanques para acuicultura ni represamiento de los flujos de agua en los pantanos para la creación de lagos con fines de recreación.

CAPÍTULO 7. VALORACIÓN Y EVALUACIÓN

7. VALORACION Y EVALUACION

7.1. EVALUACIÓN ECOLÓGICA

7.1.1. Generalidades del humedal.

- 7.1.1.1. Tamaño y posición. El humedal La Moya de Enrique se encuentra ubicado en la Finca Montealegre del municipio de Ambalema, vereda Chorrillo, en las coordenadas 04°50'32.21'' N, 74°47'15.38'' W. Hace parte de un complejo de humedales dentro del municipio que comprende las lagunas Naranjuelo, Zancudal, El Burro, El Pital, Colombia, Matecachaco, Tamaló, Guasimal, Lagunilla, Guandinosa y Violanta. Este humedal comprende un área aproximada de 3.28 hectáreas, en una altura promedio de 253 metros.
- 7.1.1.2. Conectividad ecológica. Por la cercanía del humedal La Moya de Enrique con otros humedales de la vereda Chorrillo, tales como Ambalemita, La Moya de Enrique, La Moya de Enrique y El Oval; así como su tamaño y conservación se puede deducir que existe la posibilidad de un intercambio, principalmente de organismos altamente móviles avifauna y quiropterofauna, que a su vez contribuiría al intercambio de especies de vegetación, y en menor proporción intercambio de reptiles.

Sin embargo, se hace necesario realizar estudios de seguimiento y monitoreo a poblaciones de aves y murciélagos (anillado, censos) que muestren mayor capacidad de dispersión, para identificar las relaciones que se puedan presentar entre las aves y los distintos humedales y evidenciar si existe una conectividad y a qué grado se estaría presentando. De igual forma se hace indispensable la creación de corredores biológicos que conecten estas áreas con relictos boscosos que se encuentran en la vereda Chorrillo y que presentan una alta diversidad de especies de fauna y flora; con lo cual se garantizaría la conservación de las especies asociadas al humedal.

7.1.2. Diversidad biológica. Con el fin de caracterizar la diversidad biológica del humedal La Moya de Enrique, durante los años 2013 y 2022 se trabajaron diferentes grupos de flora y fauna los cuales se determinaron hasta el mínimo nivel taxonómico posible.

Para el año 2013 se obtuvo un total de 20 géneros de fitoplancton, seis géneros de zooplancton, 13 familias de macroinvertebrados acuáticos y un total de 100

especies, de las cuales 33 corresponden a flora y 103 a la fauna silvestre vertebrada.

- ✓ diez especies de peces
- ✓ cinco especies de anfibios
- ✓ cuatro especies de reptiles
- √ 31 especies de aves
- ✓ 50 especies de mamíferos (reportados para todo el complejo lagunar de Ambalema).

Por su parte, durante el presente estudio (año 2022), se obtuvo un total de 104 especies, de las cuales 19 corresponden a flora y 112 a fauna silvestre.

- √ 13 especies de mariposas
- ✓ tres especies de peces
- √ 13 especies de anfibios y reptiles
- √ 33 especies de aves
- √ 20 especies de mamíferos

Estas cifras son importantes a la hora de evidenciar el estado de conservación del humedal, sin embargo, es necesario realizar inventarios y monitoreos periódicos en el área para verificar los verdaderos valores de diversidad en la zona.

- 7.1.3. Naturalidad. Como ya se mencionó en el humedal La Moya de Enrique la formación del espejo de agua se dio de forma natural y hasta el momento se evidencia una notoria invasión del cuerpo de agua por macrófitas acuáticas, por lo cual su espejo es muy reducido.
- 7.1.4. Rareza. La rareza del humedal está dada por la presencia de algunas especies endémicas, migratorias y categorizadas como amenazadas nacional o globalmente (Tabla 7-1). Debido a esto, es necesario realizar monitoreos de seguimiento de estas poblaciones a lo largo del tiempo, los cuales permitan conocer el tamaño poblacional de las mismas y su estado a lo largo del tiempo en el área de estudio. Así mismo, en el caso de la avifauna, se recomienda realizar monitoreos adicionales durante el período de migración con el fin de obtener un inventario más completo de las aves de la región.

Tabla 7-1. Especies de gran importancia registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

Nombre científico	Amenaza nacional	Amenaza Global	CITES	Estatus	Año
Prochilodus magdalenae	LC	VU	NE	R	2013

Nombre científico	Amenaza nacional	Amenaza Global	CITES	Estatus	Año
Leporinus muyscorum	LC	VU	NE	R	2013
Rupornis magnirostris	LC	LC	П	R	2013, 2022
Glaucis hirsutus	LC	LC	П	R	2013
Forpus conspicillatus	LC	LC	П	R	2013, 2022
Amazona ochrocephala	LC	LC	П	R	2013, 2022
Aotus griseimembra	VU	VU		R	2013
Lontra longicaudis	VU	NT	Ш	R	2013, 2022
Vanilla aff. phaeantha	EN	EN	Ш	R	2022
Danaus gilippus	LC	LC	NE	Е	2022
Andinoacara latifrons	LC	LC	NE	Е	2022
Rivulus magdalenae	LC	LC	NE	Е	2022
Dendrocygna autumnalis	LC	LC	Ш	R	2022
Ortalis columbiana	LC	LC	NP	Е	2022
Herpetotheres cachinnans	LC	LC	II	R	2022
Caracara plancus	LC	LC	II	R	2022
Milvago chimachima	LC	LC	II	R	2022

Fuente: GIZ (2022)

7.1.5. Fragilidad. Las especies con alguna categoría de amenaza son de gran relevancia para la conservación del humedal, debido a que las relaciones que presentan con su entorno son muy estrechas y en caso de perturbaciones en el hábitat, se verán reflejadas rápidamente en su tamaño poblacional, esto debido a que el número de individuos reducido no permitirá que la especie se acople o adapte fácilmente a las nuevas condiciones. Para el año 2022 en La Moya de Enrique, se registraron las especies Vanilla aff. phaeantha como en peligro y Lontra longicaudis casi amenazada tanto a nivel nacional como global (además de categorizada en el apéndice II del CITES), por lo cual las poblaciones allí registradas presentan riesgo de extinción o deterioro poblacional a mediano plazo.

Respecto a las especies registradas en los apéndices CITES, en el Apéndice I en el cual se incluyen especies que están en peligro de extinción y por tal se prohíbe su comercio internacional, no se registraron especies. Por otro lado, en el Apéndice II y III en el cual se encuentran especies que no están amenazadas pero que podrían llegar a estarlo a menos que se controle estrictamente su comercio, se registraron especies como Dendrocygna autumnalis, Caracara plancus, Milvago chimachima, Amazona ochrocephala, entre otras (Tabla 7-1).

Dada las condiciones anteriores, es importante identificar los hábitats de preferencia de las especies y en lo posible evitar la modificación del paisaje,

promoviendo un mayor uso de los hábitats disponibles para las mismas y evitando su extinción local. Así mismo, debido a que los bosques naturales cumplen una importante función reguladora controlando la cantidad y temporalidad del flujo del agua, protegiendo los suelos de procesos erosivos por acción de la gravedad y manteniendo una temperatura y evapotranspiración constante, se hace necesario velar por la recuperación y permanencia de los pequeños parches de vegetación que se observan en las inmediaciones del humedal.

Esta necesidad se hace imperante debido a que desde un punto de vista integral, estas áreas estructuralmente más complejas proveen hábitat para las especies de flora y fauna, constituyen sumideros de CO₂, albergan bancos de germoplasma, y consecuentemente contribuyen en la conservación de la biodiversidad de los humedales. Por lo tanto, la pérdida de los relictos de bosques genera un desequilibrio que se refleja en la posibilidad de inundaciones o sequías, haciendo más vulnerable los humedales a quemas en verano, pérdida de biodiversidad, pérdida de bienes materiales por inundaciones, y finalmente, destina a estos ecosistemas a su desaparición.

Así mismo, la laguna se encuentra actualmente invadida por vegetación que ha cubierto prácticamente la totalidad del espejo de agua y se evidencia una alta vulnerabilidad de las poblaciones de aves y mamíferos al ataque de gatos, perros ferales y ratas, quienes se alimentan de los huevos, crías y en algunos casos de individuos adultos. Adicionalmente, la pérdida del espejo de agua podría contribuir a la reducción de la biodiversidad de poblaciones de aves zambullidoras y nadadoras, especialmente de aquellas que son migratorias.

7.1.6. Posibilidades de mejoramiento. Dentro de las problemáticas más comunes de los humedales se encuentran quemas y talas en las franjas protectoras, degradado y alineado de interconexión de los humedales, construcción de canales artificiales, aferramientos y playones, cambios en los niveles de profundidad, construcción de carreteras, infraestructura de servicios públicos, compuertas y diques, sedimentación, pesca intensiva, sistema de riegos y acueductos, agricultura y ganadería, fijación de cauces por espolones, transporte por canales y ciénagas, sustancias tóxicas, agroquímicos, aguas residuales sin tratamiento, disposición de residuos sólidos y erosión, entre otras.

En el presente documento se establecen las posibles estrategias que se pueden implementar para el mejoramiento, reforestación o rehabilitación del ecosistema. Cabe destacar que como menciona Jaramillo-Villa et al. (2016), aunque los ecosistemas no exhiben límites abruptos, la correcta gestión de los humedales exige establecer referencias que con base en los límites donde el agua ejerce influencia en las características de tierra firme. Con base en esto y a partir del análisis presentado en el Capítulo 2, algunas de las acciones a implementar son:

- ✓ Eliminar tensionantes como las basuras, el vertimiento de aguas contaminadas y residuales, la cacería y extracción de flora y fauna, la tala y quema de árboles y el pastoreo dentro de la ronda hídrica del humedal, de esta manera se ayudaría a mejorar su calidad ambiental y se aseguraría la permanencia de las especies bióticas registradas desde el 2013 en La Moya de Enrique.
- ✓ Instalar cercas vivas con especies nativas y propias de la región o proponer programas de reforestación alrededor del humedal, dado que gran parte del cuerpo de agua no cuenta con bosque protector que permita el establecimiento y permanencia de especies propias de estos ecosistemas.
- ✓ Controlar la expansión de la frontera agrícola en las áreas aledañas al humedal, esto con el fin de evitar la entrada por escorrentía de insecticidas y abonos con elementos tóxicos para la fauna, flora y la composición química del agua.
- ✓ Conformar grupos o líneas de investigación que formulen proyectos en el humedal en busca de su conservación donde participen instituciones como colegios, universidades y ONG's, así como la comunidad en general, dado que es necesario realizar inventarios completos y monitoreos de las poblaciones de flora y fauna con el fin de evidenciar el estado actual de las poblaciones y cómo se están comportando a lo largo del tiempo.
- Debido a que la fauna y flora en general presta servicios fundamentales para el funcionamiento general del ecosistema (ej. los insectos, los murciélagos y las aves son considerados como principales agentes de dispersión de semillas y polen), se propone llevar a cabo investigaciones encaminadas a conocer la biología y ecología de diferentes grupos taxonómicos (macro y microscópicos) con lo cual se podrían no solo, conocer los procesos ecológicos y los servicios ecosistémicos prestados por la biota, si no también documentar los recursos genéticos, realizar investigaciones de línea base y especializadas e incluso favorecer nuevas oportunidades de utilización sostenible de la flora y fauna (medicina alternativa y pesca de subsistencia).

Finalmente, se contempla la protección de todos los organismos que habitan el humedal, ya que la existencia de estos mantiene procesos ecológicos y contribuyen a la diversidad mundial.

7.2. EVALUACIÓN SOCIOECONÓMICA Y CULTURAL

7.2.1. Conocimiento del humedal por los habitantes aledaños

7.2.1.1. Conocimiento del humedal. La población aledaña, correspondiente a la vereda El Chorrillo principalmente, contempla al humedal La Moya de Enrique como un ecosistema de gran atractivo turístico; el cual antiguamente brindaba importantes beneficios a los pobladores, principalmente a través de la pesca artesanal siendo este el principal sustento para ellos. En el pasado, este ecosistema era ampliamente conocido por los pobladores ya que allí también frecuentaban el humedal con fines de esparcimiento familiar usándose como balneario y aprovechando los servicios culturales que este brindaba (Figura 7-1).

Figura 7-1. Encuestas realizadas a los habitantes de las zonas aledañas al humedal objeto de estudio.

Fuente: GIZ (2022)

7.2.1.2. Conocimiento de la fauna y la flora del humedal. Los animales más comunes para los pobladores son garzas, chuchas, babillas, nutrias y serpientes cazadoras. La gran mayoría de habitantes desconoce la riqueza faunística del humedal. Desconocen la presencia de aves migratorias.

En cuanto a la flora la información que se tiene de esta es poca, la información sobre plantas medicinales o uso de las diferentes especies es regular. Este resultado pone de manifiesto que hace falta realizar talleres sobre fauna y flora, capacitaciones sobre la importancia de la conservación, problemáticas ambientales y la pérdida de biodiversidad regional y mundial, para generar una conciencia de conservación en el municipio de Ambalema.

7.2.1.3. Funciones del humedal. El humedal La Moya de Enrique, representa un recurso natural de invaluable importancia y valor para las personas que tienen sus hogares en el área de influencia. Sin embargo, a pesar de esto desconocen las principales funciones aportadas por este ecosistema. Se percibe principalmente como un espacio natural que alberga una variedad de especies tanto de fauna como de flora.

De acuerdo a lo expresado por los pobladores la densidad poblacional y diversidad de varias especies de fauna se han visto fuertemente disminuidas, debido a la actividad de la cacería que se practicaba con frecuencia en años anteriores, principalmente de babillas. El principal servicio identificado por los pobladores, es el servicio de provisión al suministrar alimento (pesca), actividad de gran importancia para ellos ya que les permitía llevar el sustento diario a sus familias, función que para ellos se vio drásticamente afectada principalmente a la restricción de acceder al humedal por encontrarse en predio privado.

Además, otra de las principales funciones identificadas por los pobladores es el uso de este ecosistema como fuente hídrica para cultivos. Otros servicios de gran importancia tal como el servicio de apoyo y regulación no son muy conocidos. Teniendo en cuenta, la falta de conocimiento más consistente entre la comunidad acerca de la importancia de este tipo de ecosistema; se propone realizar talleres participativos dirigidos a niños, jóvenes y adultos de manera periódica en donde puedan fortalecer y adquirir mayor conocimiento acerca de las funciones de los humedales. La implementación de estos espacios educativos dirigidos a la comunidad, se espera que contribuyan a generar una mayor conciencia creando estrategias para la recuperación y protección del humedal La Moya de Enrique y así mismo que se involucren en actividades que conlleven a su cuidado.

7.2.1.4. Actitud frente al humedal. A pesar de que el humedal La Moya de Enrique se encuentra en predio privado y sin acceso a la comunidad, se evidencia por una gran mayoría el interés en participar para llevar a cabo su recuperación y conservación mediante distintas actividades, entre las que se destacan: participación de jornadas de limpieza, apertura del espejo de agua e interés en general por la preservación de este ecosistema.

Adicionalmente, existe gran interés en que se realicen talleres de educación ambiental para concientizar a las distintas generaciones acerca de la importancia de este ecosistema. Por otra parte, un gran número de pobladores expresaron el interés en que se generen programas de producción piscícola en donde los pobladores de la vereda se puedan ver beneficiados de esta actividad de manera controlada para su sustento; actividad que en un pasado era común entre los pobladores de la zona de la vereda El Chorrillo, principalmente.

Para lograr, este último planteamiento es indispensable contar con acuerdos con los propietarios en los cuales se encuentran los humedales para que se desarrolle de la mejor manera para todos. Adicionalmente, se considera de importancia dar a conocer a los dueños de predios cercanos que se dedican a las actividades agrícolas, del uso responsable de los agroquímicos empleados en los cultivos cercanos al humedal con la finalidad de crear conciencia de las consecuencias generadas por estos; los cuales afectan principalmente la calidad del aire, suelo y agua.

7.2.1.5. Acciones para la recuperación del humedal. Entre las principales acciones manifestadas por los pobladores de la vereda se destaca el interés de asistir a talleres de educación ambiental y talleres de capacitación que traten aspectos del cuerpo de agua y sobre fauna y flora. Otros pobladores, plantean participar directamente en acciones como la reforestación y jornadas de limpieza.

Entre las principales preocupación expresadas las personas entrevistadas, se encuentra la ausencia del servicio de recolección de residuos y la mala disposición final de los mismos, lo cual trae como consecuencia que gran parte de los pobladores de las veredas circundantes a los humedales localizados en Chorrillo, lleven a cabo la quema y eliminación descontrolada de residuos, trayendo implicaciones importantes sobre la salud del ecosistema.

7.2.2. Valoración económica. El principal recurso de utilización con fines económicos del sistema abiótico es en esencia el recurso hídrico, el cual además de aportar el agua necesaria para el riego de tierras, anteriormente este humedal era fuente de provisión de alimento para los pobladores, viéndose afectado principalmente por la limitante de acceder al predio privado en el cual este se encuentra. En las zonas circundantes al humedal se desarrollan actividades productivas agrícolas, encontrándose principalmente cultivos de arroz.

CAPÍTULO 8. ZONIFICACIÓN DEL HUMEDAL

8. ZONIFICACIÓN DEL HUMEDAL

8.1. ZONIFICACIÓN AMBIENTAL

La zonificación ambiental, es la base para determinar cómo se deben utilizar de la mejor manera los espacios del territorio, de una forma armónica entre quienes lo habitan y la oferta de los recursos naturales; Es la carta de navegación para orientar a los actores sociales quienes intervienen y toman decisión sobre sus actuaciones en la zona, buscando así un equilibrio hombre naturaleza, de tal manera que se garantice para las generaciones futuras la sostenibilidad en términos ambientales, socioeconómicos y culturales (Mamaskato, 2008).

La zonificación para la ordenación y manejo de los humedales, se constituye además en un ejercicio dinámico, flexible el cual debe ser revisado y ajustado constantemente de acuerdo a las dinámicas sociales y a las eventualidades imprevistas como son las catástrofes naturales (Mamaskato, 2008).

8.1.1. Aspectos metodológicos

- 8.1.1.1. Delimitación de área de estudio. La extensión máxima del área de estudio correspondió a un área total de 450 hectáreas (Figura 8-2). Como referencia para la identificación de los elementos del paisaje, se utilizaron imágenes de satélite de ArcGIS online (escala 1:25000) y de Google Earth donde se incluyó como parte de la matriz todos los componentes más importantes. Dichos componentes fueron parte del territorio de interés económico como los cultivos, los canales de riego y áreas de interés ambiental como parches que corresponden a Vegetación de Crecimiento Secundario o Rastrojos etc.
- 8.1.1.2. Escala de edición. Para la edición de los polígonos (zonificación), se definió el Área mínima cartografiable en 1:3000. Este principio indica que a partir de determinada área espacial los polígonos y sus correspondientes contenidos deben ser digitalizados; de lo contrario se dificultaría la distinción y los polígonos carecerían de rigor o detalle. Finalmente, se procuró que la tolerancia del entorno de la edición de polígonos fuera de máximo dos pixeles para evitar errores topológicos y garantizar una precisión.

Mapa de Delimitación
Humedal La Pedregosa

Lerisa

Cuprocation Addisona

Cuprocation Add

Figura 8-1. Zonificación ambiental y económica del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

8.1.1.3. Sistemas de Información Geográfica. Para la zonificación ambiental se llevó a cabo una inspección general en el área de estudio, los ecosistemas y la vegetación típica. Parte de la delimitación se realizó mediante el uso de un receptor GPS (o Sistema de Posicionamiento Global) Garmin 60csx. El error de exactitud estuvo en ±3 (metros). Para homogenizar la información, se configuró el GPS en el Datum WGS 84. Finalmente, los polígonos fueron transformados a la referencia espacial Datum Magna-Sirgas y agregados al proyecto de digitalización.

Para la cartografía, se consumió el servicio de mapas a través de una inspección general de las fotografías e imágenes satelitales con el fin de tener una visión de conjunto más amplia de las coberturas. La inspección se realizó con una base de mapa de ArcGIS online y Complementos tipo open layers plugin como google satellite y bing aerial, consumidos a través de Quantum GIS 1.8.0 Lisboa.

Se procedió a realizar la cartografía del límite de cada ecosistema con el cual se realizaron los modelamientos con los que se delimitaron cada una de las unidades de zonificación a través del software ArcGIS 10.1. Las unidades, coberturas o zonificaciones se realizaron creando los polígonos que delimitan manchas homogéneas, interpretándose como hábitats o coberturas en función de su color y textura. Una vez delimitada la cobertura o zonificación (vector o polígono) se procedió a introducir sus atributos, como nombre, Perímetro y Área (hectáreas, Ha).

Las coberturas o zonificaciones principales o intermedias digitalizadas obtenidas poseen límites definidos y contienen un conjunto de atributos característicos que permiten diferenciarlas de unidades vecinas. El conjunto de todas las delineaciones (polígonos) fueron identificadas con un mismo código de cobertura (Ej. AESA=Áreas de Especial Significado Ambiental).

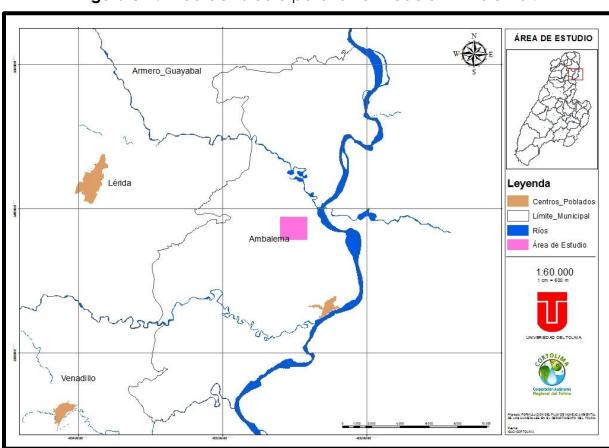


Figura 8-2. Área de Estudio para la Zonificación Ambiental.

Fuente: GIZ (2013)

8.1.1.4. Delimitación de los humedales. Para la delimitación de los parches se realizaron recorridos a pie, bordeando el humedal y tomando como borde, la vegetación característica de los parches o los espejos de agua. Al mismo tiempo se llevó un GPS (Garmin 60csx) configurado con una frecuencia de registro de cada ±5 metros, para realizar la delimitación más detalladamente, a través de un track (trayecto). El error de exactitud estuvo en ±3 (metros).

Posteriormente la información fue transformada a formato Shapefile, editada y procesada en un Sistema de Información Geográfica. Finalmente, se crearon atributos que corresponden a Área, Perímetro y Nombre.

8.1.1.5. Conservación de los humedales.

- **Delimitación de rondas hídricas.** Para la delimitación de las rondas hídricas, se utilizó el geoproceso de proximidad, llamado Buffer Analyst, en un Sistema de Información Geográfica como es ArcGIS 10.1 (SIG). El Buffer se calculó para una distancia de 30 metros alrededor de cada polígono correspondiente a los humedales (Z1), el cual se conoce como propuesta de conservación. Dicho Buffer se conoce además como Ronda hídrica.
- Criterios para la Zonificación Ambiental. La observación y análisis integrado de los elementos del paisaje permiten la identificación, delineación y caracterización de las coberturas o zonificaciones. Para tal fin se tuvo en cuenta manchas homogéneas, interpretándose como hábitats, ecosistemas o zonificaciones en función de su color y textura.

8.2. ZONIFICACIÓN PRINCIPAL

Las unidades zonificadas para toda el área de estudio se definieron de acuerdo con las siguientes categorías de sensibilidad ambiental:

8.2.1. Áreas de especial significado ambiental (AESA) (Áreas naturales protegidas, ecosistemas sensibles, rondas, corredores biológicos, presencia de zonas con especies endémicas, amenazadas o en peligro crítico). Para la Zona de Preservación Estricta, se delimitaron los humedales naturales y pantanos de la zona, teniendo en cuenta la profundidad máxima de seis metros, de acuerdo a la metodología Ramsar.

Para las zonas de conservación, los bosques y rastrojos densos, naturales y seminaturales, donde prevalece el bosque secundario (intervenido) sobre áreas de ecosistemas en sucesión vegetal (rastrojos naturales) (MAVDT, 2010).

- 8.2.2. Áreas de recuperación ambiental (ARA) (Áreas erosionadas, de conflicto por uso del suelo o contaminadas). Pastos naturales, arbolados o con rastrojo abierto, corresponden a áreas abiertas que generalmente son utilizadas para la ganadería.
- 8.2.3. Áreas de importancia social (AIS) (Asentamientos humanos, de infraestructura física y social y de importancia histórica y cultural). En cuanto a la infraestructura, se tuvo en cuenta la delimitación de los canales de riego para la adecuación de tierras, las vías principales (pavimentadas) y secundarias (sin Pavimentar). Además de las edificaciones y pistas de aterrizaje de avionetas para la fumigación. En cuanto a los cuerpos de agua, corresponden a lagunas naturales o artificiales y los cauces activos de los ríos.
- 8.2.4. Áreas de producción económica (APE) (Ganaderas, agrícolas, mineras, entre otras). Las zonas de producción económica fueron aquellos polígonos que a través de los sensores remotos o imágenes de satélite correspondieran a cultivos transitorios o permanentes. Son áreas con gran potencial para el desarrollo de proyectos agropecuarios intensivos, con cultivos de cacao, maní, maíz, fríjol, cítricos, mango y plátano; actividades que se pueden llevar a cabo siempre y cuando se realicen acciones de adecuación de tierras como son la implementación de sistemas de riego.

8.3. CATEGORÍAS DE ZONIFICACIÓN INTERMEDIA

8.3.1. Humedales (Z1). Partiendo de la definición tomada por el Ministerio del Medio Ambiente, adoptada de la definición de la Convención Ramsar, la cual establece que "... son humedales aquellas extensiones de marismas, pantanos, turberas o aguas de régimen natural o artificial, permanentes o temporales, estancadas o corrientes, dulces, salobres o saladas, incluyendo las extensiones de agua marina cuya profundidad en marea baja no exceda de seis metros" (Fide Scott y Carbonell, 1986, en Política Nacional Para Humedales Interiores de Colombia, 2001).

Esta es una unidad que debido a su importancia para la conservación de la diversidad biológica, se encuentra ligada a otros tantos sistemas ecológicos de la misma área.

Los humedales son cuerpos o espejos de agua superficial que en forma natural podrían estar establecidos en alguna subcuenca. Su gran importancia radica en que son sitios de refugio para aves y mamíferos; pero, además, es de reconocer y exaltar su belleza paisajística. Además, de las lagunas y humedales que se pueden encontrar en la zona.

- 8.3.2. Vegetación de crecimiento secundario (Z2). En general, están formados por el bosque de porte mediano. Es una comunidad natural, formada por la agrupación de plantas con una estructura vertical medianamente definida (estratos arbustivos). Estas áreas son ecosistemas, representados por pequeños relictos de bosque natural que se pueden encontrar generalmente en los márgenes de fuentes de agua (formación denominada como "Bosques de Galería", estas estructuras se encuentran dispersas latitudinalmente.
- 8.3.3. Rastrojo (Z3). Hace referencia a zonas donde prevalece ecosistemas en sucesión vegetal (rastrojos naturales), estas áreas se caracterizan por que han tenido un mayor contacto con las comunidades humanas de la región y por tanto, han sufrido una mayor depredación, ya sea para consumo de leña, uso de madera, entre otras actividades, situación que ha conllevado a una pérdida de su diversidad biológica y estructural, permitiendo que en ello se presenten procesos naturales de sucesión vegetal.
- 8.3.4. Pasturas (Z4). Esta zonificación corresponde a una de las coberturas de mayor extensión en el área de estudio. Generalmente dicha zona o cobertura es utilizada para la ganadería extensiva o para sembrar algunos cultivos propios de la zona.
- 8.3.5. Cultivos permanentes (Z7). Aunque no es un cultivo permanente como tal en este caso particular se refiere al cultivo del arroz, ya que es el sistema productivo y económico dominante de la región norte del departamento del Tolima y especialmente del municipio de Ambalema. El uso constante hace que dicho producto domine en el paisaje. Debido a los factores de satisfacción de sus demandas, el sistema de riego hace más viable su producción.

8.3.6. Vías (Z8). Las vías de comunicación son terrestres, y están constituidas por caminos ordinarios o carreteras sin pavimentar, los cuales conectan los sistemas de riego del área de estudio. Estas vías tienen aplicaciones y ventajas especiales: en el camino ordinario no es indispensable el vehículo para que las personas se trasladen de uno a otro lugar y prestan un gran servicio a la agricultura.

8.4. RESULTADOS

8.4.1. Zonificación principal. La delimitación del humedal La Moya de Enrique fue realizada en unidades homogéneas para el manejo ambiental, como resultado de la síntesis espacial de la dinámica bajo lo que podría ser el aporte en un posterior análisis multitemporal, basada en factores físicos, bióticos, sociales y económicos y en el análisis de potencialidades, limitaciones de uso, conflictos y de los riesgos naturales.

Con base en lo anterior con la agrupación de atributos, entendiéndose por atributos las unidades definidas en las diferentes variables, en general se determinaron 31 grandes polígonos agrupados en cuatro categorías o zonificaciones (Tabla 8-1). Se delimitó un total de 285.6 hectáreas y la zonificación de mayor extensión (135.8 hectáreas) corresponde a la zonificación de Área de Recuperación Ambiental (ARA); seguido de las Áreas de Especial Significado Ambiental (AESA) con una extensión de 121.1 hectáreas. El fragmento de menor extensión (2.4 hectáreas) corresponde a Áreas de Importancia Social (AIS) (Tabla 8-1), que corresponde a las vías intermunicipales.

Tabla 8-1. Resultados de Fragmentos Zonificación Principal del humedal La Moya de Enrique, Ambalema-Tolima.

Zonificación Principal	N° Fragmentos	Área Total (Ha)	% Área
AESA	18	121.1	42
AIS	1	2.4	1
APE	1	26.3	9
ARA	11	135.8	48
	31	285.6	100

Fuente: GIZ (2013)

El análisis de la representatividad es una buena herramienta para el establecimiento de prioridades en la planificación de la zonificación ambiental de los humedales y puede ser utilizado para observar cómo están representadas

las áreas alrededor de un humedal y dentro de un sistema de áreas de conservación.

Además de lo anterior se caracterizan la mayor representatividad de las zonas o fragmentos debidamente agrupados y corresponde a Áreas de Recuperación Ambiental (ARA) con un 48% y 11 polígonos, lo que permite afirmar que en la ventana de trabajo se registran una dominancia de uso de suelo que corresponde a pastizales, los cuales son usados para la ganadería extensiva. El segundo lugar de representatividad fue para la zonificación Áreas de Especial Significado Ambiental (AESA), con un 42% y 18 fragmentos, donde se agrupan áreas de rastrojos, vegetación de crecimiento secundario y los humedales. Ese número de fragmentos mayor en toda el área, puede significar algún grado de fragmentación del paisaje representado por las áreas AESA (Figura 8-3).

La menor representatividad correspondió a la zonificación Área de Importancia Social (AIS), con un 1% y corresponde particularmente a las Vías de acceso a las diferentes veredas del municipio de Ambalema (Tolima).

ABA

ABA

Leyenda

ABSA

APE

ARSA

APE

ARSA

1:3.500

1 on 135 n

UNIVERSIO DE ST. TO.MA

ARSA

ARSA

1:3.500

1 on 135 n

ARSA

A

Figura 8-3. Mapa de Zonificación Principal del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

8.4.2. Zonificación ambiental intermedia. En la ventana de trabajo (285.6 hectáreas) se delimitaron 31 polígonos agrupados en ocho categorías o zonificaciones (Tabla 8-2). La zonificación de mayor extensión (135.8 hectáreas) corresponde a la zonificación Z4, que son los pastizales, seguidos específicamente por bosques de crecimiento secundario el cual se encuentran dentro de la zonificación Z2 con un área de 84.2 hectáreas, siendo uno de los tipo de hábitat más característico en la región del Tolima, especialmente del municipio de Ambalema. En tercer lugar de extensión, corresponde a Z7, los cultivos permanentes (arroz) con un área de 9.2 hectáreas con un solo polígono. La zonificación Z1 posee una de las extensiones más pequeñas dentro de la ventana de trabajo. Su extensión corresponde a 2.2 hectáreas y un solo fragmento; el cual corresponde al área de interés y en caso particular al humedal La Moya de Enrique (Tabla 8-2).

Dentro del complejo de humedales del municipio de Ambalema, se menciona la cercanía al humedal La Moya de Enrique de otros humedales, especialmente el humedal La Pedregosa. Tal es el caso de los humedales Z5 y Z6 cada uno con una extensión de 0.6 y 19.1 hectáreas respectivamente. La zonificación Z6 fue la de menor extensión en la ventana de trabajo (Tabla 8-2).

En particular, además de lo anterior se menciona que el humedal (Z1) La Moya de Enrique, presenta una extensión de 2.2 hectáreas y se constituye en un solo fragmento o polígono (Tabla 8-2).

Tabla 8-2. Resultados de Fragmentos Zonificación Intermedia del humedal La Moya de Enrique, Ambalema-Tolima.

Nombre	Zonificación Intermedia	# Polígonos	Área (Ha)	% Área
Humedal 1	Z 1	1	2.2	8.0
Bosque Crec. Secundario	Z 2	10	84.2	29.5
Matorral	Z3	5	14.9	5.2
Pastizal	Z 4	11	135.8	47.6
Humedal 2	Z5	1	0.6	0.2
Humedal 3	Z6	1	19.1	6.7
Cultivos permanentes	Z 7	1	26.3	9.2
Vía	Z8	1	2.4	8.0
	Total	31	285.6	100

Fuente: GIZ (2013)

Para el establecimiento de prioridades en la planificación de la zonificación ambiental intermedia, se tiene en cuenta la representatividad de las coberturas

alrededor de los humedales y puede ser utilizado para observar cómo están representadas las áreas alrededor de un humedal y dentro de un sistema de áreas de conservación.

La mayor representatividad de área en la zonificación intermedia corresponde a Z4 con un 47.6% y 11 fragmentos, lo que coincide con las observaciones en campo y en los sensores remotos. Dicha representatividad es significativa ya que algunas áreas de la ventana de trabajo los usos de suelo corresponden a pastizales para la ganadería.

20NIFICACION INTERMEDIA

Leyenda

21 25
22 26
23 27
24 28

1:3.500
10 = 25 n0

Figure 15 no. 10 an extention of a residue of a residue

Figura 8-4. Mapa de Zonificación Ambiental Intermedia del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

El segundo lugar de representatividad fue para la zonificación Z2 (29.5%) y diez fragmentos, determinada como bosques de crecimiento secundario y representada por bosques en proceso de sucesión forestal, los cuales dominan parte de la matriz, siendo este uso de suelo muy importante en la conservación de los humedales, por albergar gran cantidad de especies. La menor representatividad correspondió a la zonificación Z5 con 0.2% y corresponde a un

humedal que hace parte del complejo del Municipio de Ambalema y se encuentra cerca de la zonificación Z1 (Figura 8-4).

8.5. RONDAS HÍDRICAS

La ronda hídrica es la franja alrededor de los nacimientos o los cuerpos de agua, hasta de 30 metros de ancho, de conformidad con lo dispuesto en el Decreto Ley 2811 de 1974. La ronda es fundamental para la estabilidad del ecosistema, y se considera reserva forestal de protección ecológica, ya que abarca las áreas inundables que permiten el paso de crecientes no ordinarias y tiene la función de amortiguar, dinamizar y proteger el equilibrio del humedal, por tanto, no debe ser afectada por desarrollos urbanísticos o edificaciones.

El parche Z1 y la ronda hídrica fueron unificados a través de un análisis de proximidad, con el cálculo de una nueva área, dejando además la categoría Z1. Se calculó la ronda hídrica a 30 metros del humedal Z1 (Figura 8-5), y se determinó el área de ganancia para la conservación para cada parche. El parche Z1 sin ronda hídrica presentó un área de 2.2 hectáreas aproximadamente; posteriormente con el análisis de proximidad se determinó que el área para la posible conservación es de 4.8 hectáreas aproximadamente (Tabla 8-3).

Tabla 8-3. Áreas de Conservación con Ronda Hídrica del humedal La Moya de Enrique, Ambalema-Tolima.

Nombre	Zonificación Intermedia	#Polígonos		Área (Ha) con ronda
Humedal 1	Z 1	1	2.2	4.8
Bosque Crec Sec	Z2	10	84.2	82.3
Matorral	Z3	5	14.9	14.9
Pastizal	Z4	11	135.8	135.4
Humedal 2	Z5	1	0.6	0.6
Humedal 3	Z6	1	19.1	18.9
Cultivos Permanentes	Z 7	1	26.3	26.3
Vía	Z8	1	2.4	2.4
	Total	31	285.6	

Fuente: GIZ (2013)

Finalmente, se evidencia que para establecer la ronda hídrica sería necesario utilizar áreas que también corresponde a Z2 y Z6, aproximadamente (Ver tabla

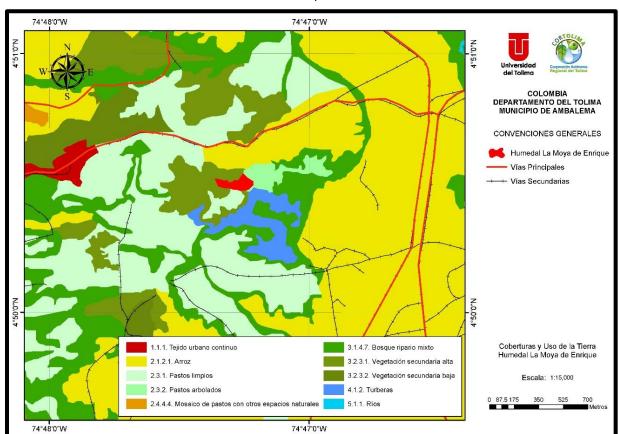

3), especialmente las áreas de bosque de crecimiento secundario aledañas al humedal Z1, que además por estar cercanas a los cultivos y a los pastizales, pueden cambiar los bosques para éstos usos de suelo, poniendo en peligro al permanencia de Z1 con área de conservación (Figura 8-5).

Figura 8-5. Mapa de Cálculo de Ronda hídrica del humedal La Moya de Enrique, Ambalema-Tolima.

Fuente: GIZ (2013)

8.6. AJUSTES EN LA ZONIFICACIÓN

Al año 2022, al realizarse la actualización de las coberturas encontradas dentro del área de estudio y en las inmediaciones del humedal La Moya de Enrique, se encontraron los siguientes componentes principales (Figura 8-6):


Figura 8-6. Coberturas y usos de la tierra presentes en el humedal La Moya de Enrique.

Fuente: GIZ (2022)

- **Bosque ripario mixto:** Cobertura constituida por vegetación arbórea ubicada en las márgenes de cursos de agua permanentes o temporales, estando limitada por su amplitud, ya que bordea los cursos de agua.
- **Pastos limpios:** Comprende las tierras cubiertas con hierba densa dominada por gramíneas (Poaceae), dedicadas a pastoreo permanente por un período de dos o más años. En el humedal El Burro, esta cobertura ocupa cerca del 10% del área de estudio, y se caracteriza principalmente por restringir el desarrollo de otro tipo de vegetación debido a prácticas constantes de manejo.
- **Pastos arbolados:** Incluye las tierras cubiertas con pastos en los cuales se han estructurado potreros con árboles de altura superior a 5 metros, distribuidos en forma dispersa.

• Cultivos anuales o transitorios- Arroz: Comprende las áreas ocupadas con cultivos cuyo ciclo vegetativo dura menos de un año; además, después de su cosecha es necesario volver a sembrar o plantar para seguir produciendo.

En el caso del humedal La Pedregosa, esta cobertura está ocupada por cultivos de arroz (Oryza sativa y O. montana), planta de la familia Poaceae, la cual se siembra en superficies planas o levemente inclinadas, en altitudes entre los 0 y 1500 metros sobre el nivel del mar.

CAPÍTULO 9. PLAN DE MANEJO AMBIENTAL

9. PLAN DE MANEJO AMBIENTAL

9.1. INTRODUCCIÓN

En el presente documento se abordan los temas concernientes a la planificación de las actividades derivadas de la caracterización del Humedal La Moya de Enrique en el valle cálido del Magdalena en el departamento del Tolima, en el marco de lo institucional, legal, económico, ambiental, social y de política pública, para los ecosistemas estratégicos.

Por tanto, el presente Plan de Manejo Ambiental del humedal, tiene como propósito rehabilitar algunas de las funciones que presta estos ecosistemas a través de la conservación de los valores que cumple ambientalmente y beneficiar las especies de flora y fauna que aún se mantienen, con el establecimiento de programas viables a corto, mediano y largo plazo que promuevan una conciliación del hombre con la naturaleza y coordinar acciones, mediante mecanismos de participación con la comunidad local, institucional e industrial.

Los ecosistemas de humedal desempeñan un papel fundamental dentro del funcionamiento de una cuenca, dependiendo para ello del comportamiento del ciclo hidroclimático; contribuyen a la vez a la regulación de la misma, y ofrecen una gran variedad de bienes, servicios, usos y funciones para el ser humano, la flora y fauna silvestre, así como, para el mantenimiento de sistemas y procesos naturales (MMA, 2002).

El presente Plan de Manejo, integra las variables socioculturales, de tradición del uso del suelo, de la fauna y flora endémica presente aún en el ecosistema y aspectos físicos, con la finalidad de planificar el desarrollo sostenible en el humedal, abriendo canales de participación activa que permita adelantar acciones de intervención para rehabilitación de hábitat en este humedal, bajo los lineamientos dados en el marco de la normatividad nacional sobre el manejo de los humedales en la Resolución 157 de 2004, Resolución 196 de 2006 y Resolución 1128 de 2006 del Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

La propuesta se hace en torno al Humedal La Moya de Enrique, a partir de la condición y la gran importancia que dicho ecosistemas reviste para la conservación de la biodiversidad, y la prestación de bienes y servicios ambientales; teniendo en cuenta esto se plasman diferentes actividades relacionadas con la investigación, gestión y divulgación, cuyo propósito fundamental consiste en diseñar estrategias para la restauración y conservación ecológica del humedal, visualizando un plan realizable desde el punto de vista operativo y financiero.

9.2. METODOLOGÍA

La metodología para el desarrollo del Plan de Manejo Ambiental (PMA), se llevó a cabo acorde con las características particulares de cada área, se identificaron los humedales que por su unidad en sí y sus características físicas son los de mayor relevancia sobre el valle cálido de Magdalena en el departamento del Tolima, a partir de los sondeos iniciales a la zona se recopiló información que sirvió para identificar los vacíos de información y así orientar los trabajos técnicos.

La información recopilada además de aportar elementos de análisis justifica la implementación de acciones que confluyeran en la elaboración de un plan de manejo para preservar o usar de manera sostenible los recursos existentes y mejorar la calidad de vida de los implicados directos sobre los humedales; considerando la integralidad y relación existente entre los diferentes ecosistemas asociados al ciclo hidrológico y las dinámicas del desarrollo socioeconómico regionales.

La metodología utilizada en este documento se sustentó en analizar los resultados de la línea base, la caracterización del Humedal La Moya de Enrique, la proyección de la perspectiva y la zonificación, para así, terminar con la formulación del plan de manejo ambiental, con un componente básico de participación en el cual se concertaron programas y posibles perfiles de proyecto que puedan enfocar los esfuerzos institucionales y comunitarios llevándolos a la ejecución.

Las fases sustentadas en lo anterior, tuvieron como principio fundamental:

- **Participación**: de los actores y dueños de las áreas sobre las cuales se identificaron los humedales, en la planificación y ejecución de cualquier esfuerzo para alcanzar el uso racional de los mismos y para que cualquier proceso a implementarse fuese conocido por los diferentes actores haciéndoles partícipes en la información técnica presentada y discutida con la comunidad, ya que, parte de la implementación y administración debe ser responsabilidad de las comunidades y las instituciones.
- Información técnica como soporte de la equivalencia entre los actores: la equivalencia de los datos suministrados a través de la participación de los actores, y en la cual el equipo técnico de acuerdo a la investigación realizada y percibida bajo observación directa sobre el área de influencia del Humedal La Moya de Enrique, permita direccionar la formulación del plan de manejo ambiental.

Para efectos del desarrollo de las acciones propuestas por el plan de acuerdo a su nivel jerárquico y la dependencia e inclusión de unas con otras, se estableció en primera instancia el diseño de la Visión, a partir de esta, la Misión y como aspecto complementario de estos parámetros iniciales de planeación, se trazaron los objetivos; la segunda etapa en la formulación del plan estableció las estrategias, dentro de estas la definición de los programas y por último, a su vez dentro de estos programas, el diseño de los perfiles de proyectos que detalla el conjunto de actividades.

El primer proceso aplicado fue consultar la información y documentación temática disponible, tomada en términos legales del Ministerio de Ambiente y Desarrollo Sostenible y en términos técnicos, de los EOTs Municipales, los Planes de Ordenación Ambiental de Cuencas-POMCAS, Planes de desarrollo municipales, Estudio de zonas secas en el departamento y Plan de Acción departamental del Tolima 2020-2023.

De acuerdo a la información consultada a través de los diferentes documentos, junto a la percepción de las comunidades y las instituciones con injerencia sobre las zonas de los humedales, se constituye una serie de programas que a su vez contienen los perfiles de proyectos formulados en una visión conjunta, suscitada desde la óptica comunitaria e institucional, que se acoge en el marco del cumplimiento de objetivos propios del plan de manejo.

9.3. VISIÓN

Los humedales naturales del valle cálido del departamento del Tolima, se constituyen en los próximos 15 años en ecosistemas estratégicos a nivel departamental, los cuales muestran condiciones ecológicas aceptables que permiten el mantenimiento de la biodiversidad y la generación de bienes y servicios ambientales a la comunidad.

Para el presente plan, considerando lo expuesto en el marco conceptual, la visión es: "Para el 2027 se espera tener restaurado ecológicamente el 25% del Humedal La Moya de Enrique, disminuyendo las amenazas que ponen en riesgo el recurso hídrico, fauna y flora, fomentando al mismo tiempo el compromiso conservación por parte de la comunidad e instituciones que se encuentran directamente relacionada con el humedal."

9.4. MISIÓN

Planteamiento, administración y ejecución de proyectos ambientales y sociales participativos, que tengan un aporte significativo en la mitigación y corrección de los procesos de degradación de los humedales naturales, mediante estrategias que permitan recuperar las condiciones naturales de estos ecosistemas, lo cual involucra realizar recomendaciones sobre el uso de los suelos, generar conciencia sobre la importancia de estos cuerpos de agua y realizar acciones directas para corregir los ecosistemas más afectados y mantener las condiciones de las zonas que aún conservan un importante potencial para la generación de bienes y servicios ambientales.

"Desarrollar una amplia gestión institucional con participación pública, privada y comunitaria que propenda por la conservación, recuperación y el uso sostenible de los recursos hídricos, flora, fauna y biodiversidad, con fundamento en la administración eficiente y eficaz, de los recursos naturales en los humedales naturales en el valle cálido del Magdalena del departamento del Tolima".

9.5. OBJETIVOS

9.5.1. Objetivo general del Plan de Manejo.

Preservar las condiciones naturales del Humedal La Moya de Enrique que permitan el mantenimiento de la biodiversidad y su capacidad de regulación hídrica.

9.5.2. Objetivos específicos.

- Conservar las áreas de especial significancia ambiental con el fin de garantizar la provisión del recurso hídrico y mantenimiento de la biodiversidad.
- Mejorar las prácticas agrícolas con el fin de disminuir el uso potencial de insumos agrícolas que puedan afectar al humedal.
- Realizar un aprovechamiento ambientalmente sostenible de la riqueza hídrica del humedal.
- Conservar las zonas que aún no han sido afectadas por procesos de origen antrópico.

9.6. TIEMPOS DE EJECUCIÓN

Corto plazo: 1 a 3 años.

Mediano plazo: 3 a 6 años.

Largo plazo: 6 a 10 años.

9.7. ESTRATEGIAS

Las estrategias del Plan de Acción están direccionadas en cinco líneas, acordes con la Política Nacional de Humedales, las cuales se desarrollan en programas y proyectos específicos a cada uno de ellos.

I. Manejo y uso sostenible

Para Ramsar "El uso racional de los humedales consiste en su uso sostenible para beneficio de la humanidad de manera compatible con el mantenimiento de las propiedades naturales del ecosistema". Se define uso sostenible como "el uso de un humedal por los seres humanos de modo tal que produzca el mayor beneficio continuo para las generaciones presentes, manteniendo al mismo tiempo su potencial para satisfacer las necesidades y aspiraciones de las generaciones futuras".

Esta estrategia está orientada a garantizar un aprovechamiento del ecosistema sin afectar sus propiedades ecológicas a largo plazo. De acuerdo a lo establecido en la Convención de Ramsar, el concepto de "Uso Racional" debe tenerse en cuenta en la planificación general que afecte los humedales. El enfoque de la presente estrategia tiene como principio la intervención para la recuperación y conservación de la diversidad biológica, promoviendo el uso público de valores, atributos y funciones que incluyen no sólo la riqueza biológica del humedal sino los procesos de ordenamiento territorial y ambiental.

II. Conservación y recuperación

Para Ramsar, "el mantenimiento y la conservación de los humedales existentes siempre es preferible y menos dispendiosa que su restauración ulterior" y que "los planes de restauración no deben debilitar los esfuerzos para conservar los sistemas naturales existentes". Los datos cuantitativos y las evaluaciones subjetivas ponen en evidencia que las técnicas de restauración hoy disponibles no redundan casi nunca en condiciones equivalentes a las de los ecosistemas naturales vírgenes. La conclusión de esto es que se ha de evitar el canje de hábitat o ecosistemas de alta calidad por promesas de restauración, excepto cuando intervengan intereses nacionales imperiosos. Con todo, la restauración de sitios determinados puede contribuir a la gestión en curso de los humedales de elevada calidad existentes, por ejemplo, mejorando el estado general de la cuenca de captación, y mejorar la gestión respecto de la asignación de recursos hídricos.

La Convención de Ramsar no ha intentado proporcionar definiciones precisas de estos términos. Aunque cabría decir que "restauración" implica un regreso a una situación anterior a la perturbación y que "rehabilitación" entraña un mejoramiento de las funciones del humedal sin regresar necesariamente a la situación anterior a la perturbación, estas palabras se consideran a menudo intercambiables tanto en la documentación de Ramsar como en la documentación relativa a la conservación. Estos *Principios y lineamientos para la restauración de los humedales* utilizan el término "restauración" en su sentido amplio, que incluye tanto los proyectos que promueven un regreso a la situación original como los proyectos que mejoran las funciones de los humedales sin promover necesariamente un regreso a la situación anterior a la perturbación.

La presente estrategia está orientada al conocimiento y manejo de la alteración del sistema acuático, conversión en los tipos de suelo y al uso actual del suelo de protección, las malas prácticas y los patrones de drenaje al humedal que reducen seriamente los beneficios ambientales y económicos del Humedal La Moya de Enrique. La estrategia está pensada para que los dos ejes recuperación y conservación sirvan como acciones de acuerdo a las fases de priorización de intervención y coordinadas alrededor de la reparación de los procesos de degradación ocurridos en el ecosistema, al igual que la prevención de futuras pérdidas ya sea de los valores, atributos y/o funciones del humedal.

III. Comunicación, formación y concienciación

Según Ramsar, la **comunicación** es el intercambio en dos sentidos de información que promueve y da lugar a un entendimiento mutuo. Es posible valerse de ella para conseguir que los 'actores'/interesados directos participen y es un medio de conseguir la cooperación de grupos de la sociedad escuchándoles primero y luego explicándoles por qué y cómo se toman las decisiones. Cuando se aplica un enfoque instrumental, se recurre a la comunicación con otros instrumentos para respaldar la conservación de los humedales a fin de encarar las restricciones económicas y motivar acciones.

La **educación** es un proceso que puede informar, motivar y habilitar a la gente para respaldar la conservación de los humedales, no sólo introduciendo cambios en sus estilos de vida, sino también promoviendo cambios en la conducta de las personas, las instituciones y los gobiernos.

La **concientización** hace que las personas y los grupos más importantes con capacidad de influir en los resultados tengan presentes las cuestiones relacionadas con los humedales. La concienciación es una labor de promoción y planificación de una agenda, permitiendo ayudar a la gente a percibir cuestionamiento/temáticas de importancia, metas trazadas y lineamientos para lograr los objetivos establecidos.

Esta estrategia tiene como principio fundamental el conocimiento del humedal, mediante la integración de distintas disciplinas, actores y procesos en cumplimiento de las necesidades expresadas en la gestión local y regional, incorporándose el componente investigativo de los procesos biofísicos y socioculturales que se desarrollan alrededor del Humedal La Moya de Enrique.

IV. Investigación, seguimiento y monitoreo

La Investigación tiene como principio fundamental el conocimiento del humedal, mediante la integración de distintas disciplinas, actores y procesos en cumplimiento de las necesidades expresadas en la gestión local y regional, incorporándose el componente investigativo de los procesos biofísicos y socioculturales que se desarrollan alrededor del Humedal La Moya de Enrique. El conocimiento permanente del tiempo de las personas que viven cercanas y aledañas al humedal generará a futuro mecanismos de apropiación y conservación por el ecosistema a nivel local.

La existencia de un programa de monitoreo y reconocimiento eficaz es un requisito previo para determinar si un humedal ha sufrido o no un cambio en sus características ecológicas. Dicho programa es un componente integral de cualquier plan de manejo de los humedales y debería permitir que, al evaluar la amplitud y lo significativo del cambio, se tengan plenamente en consideración los valores y beneficios de los humedales.

El monitoreo debería establecer la amplitud de la variación natural de los parámetros ecológicos dentro de un tiempo determinado. El cambio en las características ecológicas se produce cuando estos parámetros se sitúan fuera de sus valores normales. Así pues, se necesita, además de la labor de monitoreo, una evaluación de la amplitud y lo significativo del cambio teniendo en cuenta la necesidad de que cada humedal tenga una situación de conservación favorable.

V. Evaluación del riesgo en humedales

La Convención sobre los Humedales (Ramsar, Irán, 1971) ha elaborado este marco conceptual para evaluar el riesgo en humedales a fin de ayudar a las partes contratantes a predecir y evaluar el cambio en las características ecológicas de los humedales incluidos en la Lista de Humedales de Importancia Internacional y otros humedales. Este Marco aporta orientaciones acerca de cómo predecir y evaluar cambios en las características ecológicas de los humedales y en particular destaca la utilidad de los sistemas de alerta temprana.

Para la ejecución de los proyectos se estableció un horizonte de tiempo de diez años en los que las acciones a realizar durante los primeros tres años se definen de corto plazo; entre el cuarto y sexto año de mediano plazo, y entre el séptimo y décimo año de largo plazo.

9.7.1. Programa de recuperación de ecosistemas y hábitat. El Humedal La Moya de Enrique, ha sido altamente intervenido, donde la disminución de su hábitat como ecosistema de humedal es significativo en su oferta de servicios ambientales tanto en calidad como en cantidad, y las modificaciones de las cadenas tróficas en distintos niveles.

La desaparición del paulatina del espejo de agua, la perdida de la cobertura vegetal natural que antes presentaba el cuerpo de agua, la introducción de ganado para pastoreo, la explotación petrolífera alrededor de la área de influencia y el cambio climático, son las principales causas que han hecho que se presente alteraciones tanto en el cuerpo de agua como en sus alrededores, lo cual ha determinado la pérdida de su capacidad de resiliencia y exige una intervención activa del ser humano para encontrar el punto de retorno a una dinámica de auto-regeneración.

- 9.7.2. Programa de investigación, educación y concientización. Este programa tiene como fundamento, el conocimiento del humedal, con la integración de distintas disciplinas, actores y procesos en cumplimiento de las necesidades expresadas en la gestión regional y local, aportando de esta manera a la comprensión de los procesos biofísicos y socioculturales que se desarrollan alrededor de este humedal, sirviendo como soporte cultural. Así mismo, estas investigaciones permitirán conocer las posibilidades que el ecosistema ofrece para la toma de decisiones frente a la conservación y la sostenibilidad tanto del ecosistema como a nivel social en su área de influencia directa.
- 9.7.3. Programa manejo sostenible. El programa se fundamenta en la conservación y recuperación de la diversidad biológica del humedal, promoviendo el uso público de valores, atributos y funciones que involucran no sólo su riqueza biológica sino los procesos de ordenamiento territorial y ambiental, así como los procesos que se adelanten en las líneas de restauración del ecosistema especialmente en su zona de ronda.

El uso racional de los recursos naturales permite el aprovechamiento de las condiciones que ofrece un ecosistema, garantizando la disponibilidad en cantidad y calidad de la base productiva de una región.

9.8. PROGRAMAS Y PROYECTOS

PROGRAMA 1. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN. Comunicación, formación y concienciación

Proyecto 1.1. Ampliación del conocimiento sobre la fauna y flora silvestre.

Justificación

La recuperación de la diversidad y el crecimiento de las poblaciones de fauna y flora dependen directamente de las políticas de manejo que se implementen. Por ello se hace necesario ampliar el conocimiento que se tiene sobre las especies silvestre a fin de establecer lineamientos de manejo de las mismas, toda vez que se está presentando una fuerte presión natural sobre algunas de ellas, la cual se ve agravada por las actividades antrópicas.

Además, la alta demanda nacional e internacional de estos recursos ha conllevado cada día a incrementar el número de especies objeto de uso, es por eso que es necesario realizar estudios para conocerla, establecer planes de manejo y controlar los aprovechamientos que se hagan ilegalmente. Todos estos estudios deben ser incluidos en los planes de desarrollo de los municipios y los planes trienales de las corporaciones a fin de tener un norte frente al control y uso de los recursos. Lo cual permitirá la recuperación de las áreas degradadas y optimizará el uso de los recursos.

Objetivo general

Generar conocimiento sobre la fauna y flora silvestre del humedal que permita conocer su estado, estructura y composición, a fin de establecer programas de manejo para este recurso en particular.

Objetivos específicos

• Determinar la composición y estructura de las comunidades de fitoplancton, macrófitas y demás grupos de flora (plantas vasculares y no vasculares), así como de zooplancton, macroinvertebrados acuáticos,

edafofauna, lepidópteros, peces, herpetos, aves y mamíferos que habitan en el área de interés.

- Identificar las especies que se encuentran en alguna categoría de amenaza presentes en el área de estudio.
- Realizar monitoreos de fauna silvestre en la zona con el fin de obtener información sobre tamaños poblacionales de las especies.

Metas

- Establecimiento de programas de conservación y aprovechamiento del recurso "fauna" y "flora" a partir del conocimiento generado.
- Inventario actualizado de flora y fauna asociada al humedal.

Actividades

- Caracterización de la fauna y flora silvestre asociada al humedal y su área de influencia.
- Análisis físico-químico y bacteriológico del cuerpo de agua.

Indicadores

- Inventario y censo consolidado de la fauna y flora silvestre.
- Listado de especies amenazadas o vulnerables que se encuentran establecidas o hacen uso transitorio del humedal y su área de influencia.
- Listado de especies de interés comercial y posibles programas de aprovechamiento sostenible para cada una de ellas.
- Indicador de calidad del agua del humedal.

Responsables

- 1. CORTOLIMA.
- 2. Comunidad.
- 3. Universidades y otras instituciones de educación superior.

Prioridad: Mediano plazo.

CRONOGRAMA

PROGRAMA 1. INVESTIGACIÓN, EDUCACIÓN Y C	:01	NC	IE	NT	IZ <i>A</i>	٩C	ΙÓ	N		
Proyecto 1.1. Ampliación del conocimiento sobre la	fa	υn	a y	y f	lor	a s	silv	/es	stre	€.
Actividades	1	2	3	4	5	6	7	8	9	0
1.1.1 Caracterización de la flora asociada al					_					
humedal (fitoplancton, macrófitas, arbóreas).					^					
1.1.2 Caracterización de la fauna asociada al										
humedal (zooplancton, macroinvertebrados					v					
acuáticos, mariposas, peces, herpetos, aves y					^					
mamíferos).										
1.1.3 Análisis de calidad de agua.					Χ					

COSTOS

PROGRAMA 1. INVESTIG	GACIÓN, EDU	CACIÓN Y CONCIEI	NTIZACIÓN
Proyecto 1.1. Ampliación o	lel conocimie	nto sobre la fauna y	/ flora silvestre.
Actividad	Cantidad	Valor Unitario	Valor Total
1.1.1 Caracterización de la flora asociada al humedal (fitoplancton, macrófitas, arbóreas).	1	\$25,000,000	\$25,000,000
1.1.2 Caracterización de la fauna asociada al humedal (zooplancton, macroinvertebrados acuáticos, mariposas, peces, herpetos, aves y mamíferos).	1	\$32,000,000	\$32,000,000
1.1.3 Análisis de calidad de agua.	1	\$6,000,0000	\$6,000,000
TOTAL	******	*********	\$63,000,000

Proyecto 1.2. Programa de educación ambiental y apropiación social participativa de los humedales.

Justificación

La exigencia de poner en marcha un programa de educación y sensibilización ambiental comunitaria se basa en el propósito de informar, formar y sensibilizar a la población de la necesidad de preservar el patrimonio ambiental, puesto que la responsabilidad no puede recaer única y exclusivamente en la administración, sino que será fruto de un proyecto de construcción colectiva.

En este marco se concibe la educación y sensibilización ambiental como una herramienta o instrumento para la gestión, coherente con los principios inspiradores de la mancomunidad. Siendo una acción complementaria y coherente con la gestión en propenda a la conservación del humedal.

La sensibilización combina integralmente acciones de transmisión directa y aprovechamiento, creando oportunidades para establecer un diálogo personal con la comunidad y los propietarios.

La educación ambiental formal y no formal ofrece un conjunto integrado de recursos materiales y humanos que puedan utilizarse para diseñar, adaptar, organizar y desarrollar sus propias actividades o programaciones de educación ambiental en torno al humedal.

Este proceso también involucra la comunidad estudiantil ya que desde las aulas de clase podría darle continuidad al proceso de sensibilización con el fin de que sus alumnos sean los multiplicadores y quienes lleven esta cultura ambiental para las generaciones futuras.

Objetivo general

Lograr comunidades organizadas y con capacidad de definir sus políticas y planes de desarrollo como respuesta a un modelo de gestión participativa y pedagógica para la conservación de los humedales de las zonas bajas del Tolima.

Objetivos específicos

Fortalecer la organización comunitaria y la participación ciudadana.

- Contribuir a transformar hábitos culturales poco amigables con el medio ambiente y sus recursos naturales para valorar territorio como un bien comunitario e histórico.
- Implementar una educación y una formación pedagógica desde lo propio para valorar y utilizar los recursos eficiente y sosteniblemente.

Metas

- Establecer organizaciones comunitarias y grupos poblacionales involucrados e interactuando en el proceso de desarrollo sostenible.
- Comunidades con conocimiento de su territorio en términos de extensión, linderos, áreas estratégicas, bienes, servicios y potencialidades.

Actividades

- Realización de talleres educativos y teórico-prácticos "Cuando Cuentas Cuencas- Humedales a Todo Color" y sobre tráfico ilegal de fauna y flora.
- Señalización del humedal mediante la instalación de vallas informativas ambientales.

Indicadores

- Número de grupos y/o organizaciones comprometidas
- Número de talleres realizados /N₀ talleres programados
- Número de líderes y pobladores capacitados y comprometidos con el manejo y el aprovechamiento de los recursos de los humedales.
- Número de vallas instaladas.

Responsables

- 1. Alcaldía municipal.
- 2. CORTOLIMA.
- 3. Comunidad.

Prioridad: Corto plazo.

CRONOGRAMA

PROGRAMA 1. INVESTIGACIÓN, EDUC	AC	IÓN Y	/ C	ON	CIE	NTI	ZA	CIĆ	N			
Proyecto 1.2. Educación ambiental y apropiación social participativa de los humedales.												
Actividades	1	2	3	4	5	6	7	8	9	10		
1.2.1 Talleres teórico-prácticos "Cuando Cuentas Cuencas- Humedales a Todo Color".		2				2				2		
1.2.2 Talleres educativos sobre tráfico ilegal de fauna y flora.		1				1				1		
1.2.3 Material didáctico de humedales.		200										
1.2.4 Señalización del humedal.		3										

COSTOS

PROGRAMA 1. INVESTIG	ACIÓN, EDU	CACIÓN Y CONCI	ENTIZACIÓN
Proyecto 1.2. Educación an	nbiental y a los humed	-	participativa de
Actividad	Cantidad	Valor Unitario	Valor Total
1.2.1 Talleres teórico- prácticos "Cuando Cuentas Cuencas- Humedales a Todo Color".	6	\$5,000,000	\$30,000,000
1.2.2 Talleres educativos sobre tráfico ilegal de fauna y flora.	3	\$3,000,000	\$6,000,000
1.2.3 Material didáctico de humedales (Cartilla).	200	\$6,000	\$1,200,000
1.2.4 Señalización del humedal (Vallas).	3	\$7,500,000	\$22,500,000
TOTAL	******	******	\$59,700,000

Proyecto 1.3. Evaluación ambiental del humedal.

Justificación

El Humedal La Moya de Enrique en los últimos años ha vendido perdiendo la capacidad de almacenar agua y por consiguiente ha disminuido el área del espejo de agua especialmente durante las épocas de sequía, como lo indica el estudio batimétrico del año 2022.

Teniendo en cuenta algunos factores que pueden estar incidiendo en la pérdida de su capacidad de almacenamiento, posiblemente por el desarrollo actividades agropecuarias intensivas en el área de influencia y por efectos de cambio climatéricos, es de mucha relevancia e importancia realizar estudios que determinen y en lo posible permitan establecer las causas directas de la pérdida del espejo de agua, logrando tomar acciones más concretas, para mejorar la capacidad de provisión y regulación del Humedal La Moya de Enrique.

Objetivo general

Realizar los estudios ambientales tendientes a establecer las causas de la perdida y capacidad de almacenamiento y riesgo de contaminación de las aquas del Humedal La Moya de Enrique.

Objetivos específicos

Realizar el estudio hidrogeológico del Humedal La Moya de Enrique.

Metas

• Estudio hidrogeológico del área de influencia del Humedal La Moya de Enrique.

Actividades

• Realización de un estudio hidrogeológico del área de influencia del Humedal La Moya de Enrique.

Indicadores

Documento del estudio realizado.

Responsables

1. CORTOLIMA.

Prioridad: Corto plazo.

CRONOGRAMA

PROGRAMA 1. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN										
Proyecto 1.3. Evaluación ambiental del humedal.										
Actividades	1	2	3	4	5	6	7	8	9	0
1.3.1 Estudio hidrogeológico del Humedal La Moya de Enrique.		Χ								

COSTOS

PROGRAMA 1. INVESTIGA	CIÓN, EDUC	CACIÓN Y CONC	CIENTIZACIÓN								
Proyecto 1.3. Evaluación ambiental del humedal.											
Actividad	Cantidad	Valor Unitario	Valor Total								
1.3.1 Estudio hidrogeológico del Humedal La Moya de Enrique.	1	\$100,000,000	\$100,000,000								
Total	*****	*****	\$100,000,000								

PROGRAMA 2. MANEJO SOSTENIBLE. Manejo y uso sostenible

Proyecto 2.1. Control y seguimiento.

Justificación

Todas las actividades incluidas dentro del Plan de Manejo requieren el seguimiento permanente en su ejecución con el fin de garantizar oportunamente el desarrollo de estas conforme a lo propuesto, y así lograr la conservación y uso sostenible de los recursos asociados al humedal. Así mismo, el seguimiento garantiza que se tomen medidas de acción preventiva o correctiva oportunas que prevengan algún aspecto que ponga en riesgo el bienestar del humedal. Por otro lado, con el control y seguimiento se logra detallar el avance de ejecución, como también el estado de recuperación y las condiciones del humedal.

Objetivo general

Implementar estrategias de control y vigilancia que contribuyan al bienestar de las comunidades locales y la promoción de la conservación del humedal.

Objetivos específicos

• Desarrollar actividades de control y vigilancia a los procesos de recuperación del humedal.

Metas

• Ejercer a través de CORTOLIMA procesos de control y vigilancia que garanticen en un 100% la implementación del plan de manejo del humedal.

Actividades.

- Operativos de control y vigilancia a los procesos de recuperación del humedal.
- Creación del comité interinstitucional del humedal.

Indicadores.

- Número de operativos de control y vigilancia realizados en torno la ejecución de actividades del plan de manejo del humedal.
- Número de reuniones de comité.

Responsables

- 1. CORTOLIMA.
- 2. Alcaldía municipal.
- 3. Gobernación.
- 4. Policía ambiental.
- 5. Academia.

Prioridad: Mediano y largo plazo.

CRONOGRAMA

PROGRAMA 2. MANEJO SOSTENIBLE.												
Proyecto 2.1. Control y seguimiento.												
Actividades	1	2	3	4	5	6	7	8	9	10		
2.1.1 Operativos de control, seguimiento y vigilancia del humedal.		Χ	Х	Х	Х	Χ	Х	Χ	Χ	Χ		
2.1.2 Conformación comité interinstitucional del humedal.	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ		

COSTOS

PROGRAM	A 2. MANEJ	O SOSTENIBLE.	
Proyecto 2	2.1. Control	y seguimiento.	
Actividad	Cantidad	Valor Unitario	Valor Total
2.1.1 Operativos de control, seguimiento y vigilancia del humedal.	9	\$500,000	\$4,500,000
2.1.2 Conformación comité interinstitucional del humedal.	10	\$400,000	\$4,000,000
Total	****	******	\$9,500,000

9.9. EVALUACIÓN DEL PLAN DE MANEJO

Para la planificación, seguimiento y evaluación del Plan integrado de manejo del humedal estará a cargo de la Corporación Autónoma del Tolima (CORTOLIMA) con supervisión del comité interinstitucional del Humedal La Moya de Enrique.

Revisión Trienal del Plan de Manejo

Esta etapa se propone cada tres años, donde participará el comité coordinador, representantes de comunidades beneficiarias de los proyectos, las entidades ejecutoras y ONG's. El objetivo principal es evaluar la implementación del Plan de Manejo.

9.10. PLAN DE TRABAJO ANUAL

Programas y Proyectos	PLAN DE TRABAJO ANU (AÑO)							IU <i>A</i>	λL	
	1	2	3	4	5	6	7	8	9	0
PROGRAMA 1. INVESTIGACIÓN, EDUCACIÓN Y CO	NC	IEN	TIZ	AC	ΙÓΙ	N				
Proyecto 1.1. Ampliación del conocimiento sobre la fa	un	а у	flo	ra :	silv	est	re.			
1.1.1 Caracterización de la flora asociada al humedal.					Χ					
1.1.2 Caracterización de la fauna asociada al humedal.					Χ					
1.1.3 Análisis de calidad de agua.					Χ					
Proyecto 1.2. Educación ambiental y apropiación social parti	cip	ativ	/a	de	los	hu	ım	edo	ale	s.
1.2.1 Talleres teórico-prácticos "Cuando Cuentas Cuencas- Humedales a Todo Color".		Χ				Χ				Х
1.2.2 Talleres educativos sobre Tráfico llegal de Fauna y Flora		Χ				Χ				Χ
1.2.3 Material didáctico de humedales		Χ								
1.2.3 Señalización del humedal		Χ								
Proyecto 1.3. Evaluación ambiental del hu	me	eda	ıl.							
1.3.1 Estudio hidrogeológico del Humedal La Moya de Enrique		Χ								

PLAN DE TRABAJO (AÑO)								ANUAL						
	1	2	3	4	5	6	7	8	9	0				
PROGRAMA 2. MANEJO SOSTENIBLE	•													
Proyecto 2.1. Control y seguimiento	٠.													
2.1.1 Operativos de control, seguimiento y vigilancia del humedal		Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Х				
2.1.2 Conformación Comité Interinstitucional del humedal	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ				

9.11. COSTOS DEL PLAN DE MANEJO AMBIENTAL

Programas y Proyectos	PLAN DE TRABAJO ANUAL (AÑO) 1 2 3 4 5 6 7 8 9 0
PROGRAMA 1. INVESTIGACIÓN, EDUCACIÓN Y CO	NCIENTIZACIÓN
Proyecto 1 .1. Ampliación del conocimiento sobre la fo	auna y flora silvestre.
1.1.1 Caracterización de la flora asociada al humedal.	\$25,000,000
1.1.2- Caracterización de la fauna asociada al humedal.	\$32,000,000
2.1.3 Análisis de calidad de agua.	\$6,000,000
SUBTOTAL	\$63,000,000
Proyecto 1.2 Educación ambiental y apropiación social parti	cipativa de los humedales.
1.2.1 Talleres teórico-prácticos "Cuando Cuentas Cuencas- Humedales a Todo Color".	\$30,000,000
1.2.2 Talleres educativos sobre tráfico ilegal de fauna y flora.	\$6,000.000
1.2.3 Material didáctico de humedales.	\$1,200.000
1.2.4 Señalización del humedal.	\$22,500,000
SUBTOTAL	\$59,700,000
Proyecto 1.3. Evaluación ambiental del h	umedal
1.3.1 Estudio hidrogeológico del Humedal La Moya de Enrique	\$100,000,000

Programas y Proyectos	PLAN DE TRABAJO ANUAL (AÑO)											
	1	1 2 3 4 5 6 7 8 9						9	0			
SUBTOTAL			:	\$10	0,0	00	,00	0				
PROGRAMA 2. MANEJO SOSTENIBLE												
Proyecto 2.1. Control y seguimiento) .											
2.1.1 Operativos de control, seguimiento y vigilancia del humedal.				\$4	,50	0,0	000					
2.1.2 Conformación Comité Interinstitucional del humedal.				\$4	,00	0,0	000					
SUBTOTAL		\$8,500,000										
TOTAL			:	\$28	5,2	200	,00	0				

Anexo A. Especies de flora registradas en el humedal La Moya de Enrique, Ambalema-Tolima.

FLORA

Orden: Asparagales **Familia:** Orquidaceae

Género: Vanilla

Especie: Vanilla aff. phaeantha

Nombre común: Vainilla

Descripción: Bejuco, raíces aéreas, Hojas simples, alternas, cartáceas, inflorescencias axilares, flores zigomórficas, fruto en baya (WFO, 2022).

Hábitat: NE.

Categoría: En peligro (WFO, 2022).

Distribución nacional: NE.

Orden: Boraginales **Familia:** Boraginaceae

Género: Cordia

Especie: Cordia alliodora Nombre común: Nogal

Descripción: Árbol hasta 20 m de altura, hojas simples, alternas, inflorescencias terminales en panículas, flores pequeñas color blanca, Fruto seco elipsoide (WFO, 2022).

Hábitat: NE.

Categoría: No evaluada (Miller, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Arauca, Bolívar, Boyacá, Caldas, Cesar, Chocó, Cundinamarca, La Guajira, Huila, Magdalena, Nariño, Norte de Santander, Putumayo, Quindío, Santander, Sucre, Tolima, Valle, <1800 m (Miller, 2022).

Orden: Caryophyllales

Familia: Achatocarpaceae Género: Achatocarpus

Especie: Achatocarpus nigricans

Nombre común: Limonacho

Descripción: Árboles, a veces arbustos desde 2-10 m hasta 20 m, Hojas simples, alternas, inflorescencias paniculadas, flores pequeñas actinomorfas, frutos pequeños esféricos (Thomas et al., 2021; WFO, 2022).

Hábitat: Bosques densos, matorrales, laderas montañosas despejadas, orillas de arroyos y ríos,

planicies arenosas (WFO, 2022).

Categoría: No evaluada (Bernal, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Atlántico, Bolívar, Cundinamarca, La Guajira, Huila, Magdalena, San Andrés, Providencia y Santa Catalina, Sucre, Tolima, Valle, entre 10-1300 m (Dor, 2022).

Género: Triplaris

Especie: *Triplaris americana* **Nombre común:** Varasanta

Descripción: Árboles pequeños hasta 20 m de altura, hojas simples, alternas, frutos en aquenios marrones o amarillentos (WFO, 2022).

Hábitat: NE.

Categoría: No evaluada (Aymard, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Amazonas, Antioquia, Atlántico, Chocó, Magdalena, Meta, Putumayo, Santander, Tolima, Vaupés, entre 0-2000 m (Aymard, 2022).

Orden: Caryophyllales Familia: Talinaceae Género: Talinum

Especie: Talinum fruticosum

Nombre común: Hierba de sapo, lechuga

platanera

Descripción: Hierbas de 0.2 m, hojas simples, alternas, suculentas, flores hermafroditas solitarias de color morado, frutos en capsulas dehiscentes (WFO, 2022).

Hábitat: NE.

Categoría: No evaluada (Kelly, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Atlántico, Bolívar, Chocó, Cundinamarca, Guainía, La Guajira, Magdalena, Sucre, Tolima, Valle, entre 5-1580 m (Kelly, 2022).

Especie: Machaerium aff. goudotii

Nombre común: Capote

Descripción: Árboles hasta 15 m, frutos alados en forma de machete (Ruiz et al., 2022a).

Hábitat: Se encuentran en matorrales secos, bosques caducifolios, generalmente en las orillas de ríos, y ambientes húmedos (WFO, 2022).

Categoría: Preocupación menor (Ruiz et al., 2022a).

Distribución nacional: La especie se ha reportado en los departamentos de Amazonas, Antioquia, Boyacá, Cundinamarca, Magdalena, Tolima, entre 300-700 m (Ruiz et al., 2022b).

Orden: Fabales
Familia: Fabaceae
Género: Machaerium

Especie: Machaerium capote

Nombre común: Capote

Descripción: Árboles hasta 15 m, hojas compuestas, alternas, inflorescencias en racimos o panículas cimosas, flores papilionadas amarillas, frutos alados en forma de machete (WFO, 2022).

Hábitat: Se encuentran en matorrales secos, bosques caducifolios, generalmente en las orillas de ríos, y ambientes húmedos (WFO, 2022).

Categoría: Preocupación menor (Ruiz et al., 2022b).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Atlántico, Bolívar, Caldas, Chocó, Córdoba, Cundinamarca, Huila, Magdalena, Risaralda, Santander, Tolima, Valle, entre 6-1600 m (Ruiz et al., 2022b).

Orden: Lamiales

Familia: Bignoniaceae **Género:** Bignonia

Especie: Bignonia diversifolia

Nombre común: Bejuco de adorate

Descripción: Bejucos, tallos levemente tetragonales, hojas compuestas bifoliadas, flores zigomorfas tubulares de color purpura, frutos en silicua (WFO, 2022).

Hábitat: común en bosques secos (WFO, 2022). **Categoría:** Preocupación menor (Gradstein, 2022a).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Atlántico, Bolívar, Boyacá, Cesar, Cundinamarca, La Guajira, Huila, Magdalena, Norte de Santander, Santander, Sucre, Tolima, Valle, crece <2700 m (Gradstein, 2022a).

Orden: Lamiales

Familia: Bignoniaceae **Género:** Handroanthus

Especie: Handroanthus chrysanthus

Nombre común: Chicalá

Descripción: Árboles hasta 30 m, hojas palmaticompuestas, opuestas, Inflorescencia en panícula, flores zigomorfas tubular de color amarillo, frutos en silicua (WFO, 2022).

Hábitat: Generalmente de bosques primarios

(WFO, 2022).

Categoría: Preocupación menor (Gradstein,

2022b).

Distribución nacional: La especie se ha reportado en los departamentos de Amazonas, Antioquia, Atlántico, Bolívar, Boyacá, Caldas, Caquetá, Cesar, Chocó, Córdoba, Cundinamarca, Magdalena, Meta, Quindío, Santander, Tolima, Valle, crece <2300 m (Gradstein, 2022b).

Orden: Malpighiales Familia: Salicaceae Género: Casearia

Especie: Casearia corymbosa **Nombre común:** Ondequera

Descripción: Arbustos o árboles desde 1-20 m de altura, Hojas simples, alternas, con líneas translucidas en el limbo, cimas corimbosas, flores hermafroditas blancas, fruto subgloboso de color anaranjado o rojo al madurar (WFO, 2022).

Hábitat: Muy común en bosques secos a muy húmedos (WFO, 2022).

Categoría: No evaluada (Alford, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Atlántico, Bolívar, Caldas, Cesar, Cundinamarca, La Guajira, Huila, Magdalena, Meta, Sucre, Tolima, Valle, entre 30-1200 m (Alford, 2022).

Orden: Malpighiales Familia: Erythroxylaceae Género: Erythroxylon

Especie: Erythroxylon aff. hondense

Nombre común: Coca

Descripción: Arbustos hasta 1.5 m de altura, Hojas simples, alternas, estipulas libres laterales

(WFO, 2022). **Hábitat:** NE.

Categoría: No evaluada (Jara-Muñoz, 2022). Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Arauca, Cauca, Cesar, Cundinamarca, Huila, Magdalena, Tolima, Valle, entre 150-1300 m (Jara-Muñoz, 2022).

Orden: Sapindales

Familia: Anacardiaceae

Género: Astronium

Especie: Astronium graveolens

Nombre común: Diomate, gusanero

Descripción: Árbol hasta 50 m, Hojas compuestas, alternas, dioica, flores pequeñas polinizadas por insectos, frutos alados pequeños dispersados por loros y roedores (Thomas *et al.*, 2021; WFO, 2022).

Hábitat: Bosque Seco Tropical (Thomas *et al.,* 2021).

Categoría: Preocupación menor (Mitchell, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Bolívar, Casanare, Chocó, La Guajira, Magdalena, Sucre, Valle del Cauca, Tolima, entre 5-1000 m (Mitchell, 2022).

Orden: Sapindales Familia: Burseraceae Género: Bursera

Especie: Bursera simaruba Nombre común: Caratero

Descripción: Árbol hasta 25 m, Hojas compuestas, inflorescencia en panículas, frutos

pequeños elipsoides (WFO, 2022).

Hábitat: Bosque Seco Tropical (WFO, 2022).

Categoría: No evaluada (Daly, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Bolívar, Casanare, Chocó, Córdoba, Cundinamarca, La Guajira, Huila, Magdalena, San Andrés, Providencia y Santa Catalina, Santander, Sucre, Vichada, entre 0-920 m (Daly, 2022).

Orden: Sapindales
Familia: Sapindaceae
Género: Melicoccus

Especie: Melicoccus bijugatus **Nombre común:** Mamoncillo

Descripción: Árboles hasta 30 m, hojas compuestas, alternas, inflorescencias en racimos terminales, flores blancas, fruto en drupa globosa (WFO, 2022).

Hábitat: NE.

Categoría: No evaluada (Obando, 2022).

Distribución nacional: La especie se ha reportado en los departamentos de Antioquia, Bolívar, Cesar, Chocó, Córdoba, Cundinamarca, La Guajira, Huila, Magdalena, Quindío, San Andrés, Providencia y Santa Catalina, Sucre, Tolima, Valle, entre 20-1500 m (Obando, 2022).

Anexo B. Especies de fauna registrada en el humedal La Moya de Enrique, Ambalema-Tolima.

LEPIDÓPTEROS DIURNOS

Orden: Lepidoptera Familia: Nymphalidae Género: Chlosyne

Especie: Chlosyne lacinia

Nombre común: Mariposa de parche bordeado

Descripción: La parte superior es negra con una banda mediana naranja o crema muy ancha y pequeñas manchas pos medianas naranjas o blancas. La parte inferior de las alas traseras es negra con una banda mediana de color amarillo a crema, pequeñas manchas pos medianas blancas y grandes manchas marginales de color crema. La mancha roja cerca del abdomen suele estar separada de la banda media. 1 3/8-2 pulgadas (3.5-5.1 cm) (Warren et al., 2017).

Hábitat: Bosques de pinos o robles, bosques espinosos, colinas desérticas, campos, bordes de caminos, cercas (Warren et al., 2017).

Categoría: No evaluada (IUCN, 2022).

Orden: Lepidoptera **Familia:** Nymphalidae

Género: Danaus

Especie: Danaus gilippus

Nombre común: Mariposa reina

Descripción: La parte superior es marrón castaño; los bordes negros de las alas anteriores tienen dos filas de puntos blancos; manchas blancas están dispersas en el ápice de las alas anteriores. La parte inferior de las alas traseras tiene venas negras; los bordes negros de ambas alas tienen dos filas de puntos blancos (Warren et al., 2017).

Hábitat: Áreas abiertas y soleadas que incluyen campos, desiertos, bordes de caminos, pastizales, dunas, arroyos y cursos de agua (Warren et al., 2017).

Categoría: Preocupación menor (IUCN, 2022).

Orden: Lepidoptera Familia: Hesperiidae Género: Heliopetes

Especie: Heliopetes petrus

Nombre común: Mariposa saltarina blanca con

rayas negras

Descripción: Larva de comportamiento diurno, una de las características en esta especie es que tiene muchos bellos y se alimenta solamente de una sola familia de planta Malvaceae (Umaña et al., 2018).

Hábitat: Son tranquilas pasan en reposo casi todo el tiempo, se localizan en varios sectores del área de Conservación Guanacaste, de bosque secos y lluviosos (Umaña et al., 2018).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: Se ubica en América central en los siguientes sectores: Sector Pitilla, con 51 records, Sector Rincón Rain Forestlas 45 records, es el sector de mayor records encontrados seguido del Sector San Cristóbal, Sector Santa Rosa, Sector Horizontes, Sector Mundo Nuevo, Sector El Hacha, Potrerillos (Umaña et al., 2018).

Orden: Lepidoptera Familia: Hesperiidae Género: Urbanus

Especie: Urbanus proteus

Nombre común: Saltarina de cola larga azul

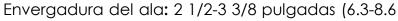
Descripción: Las colas son largas. El dorso es marrón negruzco oscuro; el cuerpo y las bases de las alas son azules verdosos iridiscentes. Los machos tienen un pliegue costal que encierra escamas de olor en el borde delantero de las alas anteriores. La fila oscura en la parte inferior de las alas traseras es una banda completa (Warren et al., 2017).

Hábitat: Campos con maleza, bordes de bosques, jardines y otros hábitats abiertos perturbados

(Warren et al., 2017).

Categoría: No evaluada (IUCN, 2022).

Distribución nacional: Centro y Occidente de


Colombia.

Orden: Lepidoptera Familia: Pieridae Género: Ascia

Especie: Ascia monuste

Nombre común: Mariposa blanca del sur

Descripción: Superficie superior de las alas delanteras del macho blancas con patrón en zigzag negro en el margen exterior. La forma de la hembra en la estación seca se parece al macho con un patrón de zigzag negro más pesado y una pequeña mancha negra en la celda del ala. La hembra de la estación húmeda está oscurecida con escamas negras arriba y abajo.

cm) (Warren et al., 2017).

Hábitat: Marismas, dunas costeras, campos

abiertos y jardines (Warren et al., 2017).

Distribución nacional: <1000 m.

Orden: Lepidoptera Familia: Nymphalidae Género: Euptoieta

Especie: Euptoieta hegesia

Nombre común: Mariposa organillo clara

Descripción Parte superior de ambas alas con la mitad basal de color naranja sin dibujo y poco o ningún contraste entre la parte basal y la externa. Márgenes de las alas traseras no angulados; parte inferior marrón anaranjado con patrón más oscuro. Envergadura: 2 9/16-2 15/16 pulgadas (6.5-7.5 cm) (Warren et al., 2017).

Hábitat: Aberturas, bordes, campos y áreas cubiertas de malezas en tierras bajas y estribaciones tropicales y subtropicales (Warren et al., 2017).

Categoría: No evaluada (IUCN, 2022)

Distribución nacional: Zona central de nuestro país, es de vuelo incesante, esta especie está

ampliamente distribuida principalmente en centro América (García *et al.,* 2002).

ICTIOFAUNA

Orden: Blenniiformes **Familia:** Cichlidae

Especie: Andinoacara latifrons **Nombre común:** Mojarra azul

Hábitat: los individuos de esta especie se han observado en cuerpos de agua con baja corriente en sustratos de arena, grava, hojarasca y lodo; aunque, algunos habitan ríos más correntosos. Se alimenta de insectos y crustáceos. Adhieren sus posturas a las superficies de las rocas, troncos u hojas sumergidas que son vigiladas por los machos. En caso de peligro los padres protegen a sus crías en la boca (Galvis, 1997).

Categoría: Preocupación menor (IUCN, 2022). Distribución: Se distribuye en los ríos Magdalena, Atrato, San Juan, Sinú, San Jorge, Cauca, Cesar, Catatumbo y en la cuenca del alto Magdalena (Mojica 1999). Para el departamento del Tolima se ha registrado en las zonas bajas de las cuencas de Prado, Lagunillas, Totare y Coello (Maldonado-Ocampo et al., 2005).

Orden: Blenniiformes Familia: Poeciliidae

Especie: Poecilia caucana **Nombre común:** Gupy, pipón

Hábitat: Habita en ecosistemas con velocidad de la corriente baja, en zonas con fondos de hojarasca y material vegetal, se alimenta principalmente de estadios inmaduros de insectos acuáticos. Es resistente a condiciones extremas de temperatura, salinidad y oxigeno (Maldonado-Ocampo et al., 2005).

Categoría: Preocupación menor (IUCN, 2022). Distribución: Presenta distribución muy amplia en la cuenca Magdalena-Cauca (Maldonado-

Ocampo et al., 2005). En el departamento del Tolima se ha reportado en las cuencas del rio Prado, Coello, Guarinó, Lagunillas y Totare.

Orden: Blenniiformes **Familia:** Rivulidae

Especie: Rivulus magdalenae

Nombre común: Saltón

Hábitat: Habita fondos con vegetación sumergida asociado a las márgenes de los ríos con baja corriente y ecosistemas lenticos. Se alimenta principalmente de larvas de macroinvertebrados acuáticos (Maldonado-Ocampo et al., 2005).

Categoría: Preocupación menor (IUCN, 2022). Distribución: Se encuentra distribuido por la parte media y baja de la cuenca del río Magdalena y Cauca, así como en el Atrato y San Juan; Guaduas entre Honda y Facatativá; Villeta entre Honda y Facatativá; quebradas Chamizal entre Honda y Facatativá y Cristalina cerca de Puerto Berrío; en el río Caquetá y Arauca (Maldonado-Ocampo et al., 2005). Durante él estudió regional del agua fase 1 del departamento del Tolima (ERA1) se registró en la cuenca del río Gualí y Opia.

Orden: Blenniiformes
Familia: Ctenoluciidae
Especie: Ctenolucius hujeta
Nombre común: Agujeto, aguja

Hábitat: Se encuentra en ríos y quebradas con baja corriente, especialmente en las zonas ribereñas. Es un individuo predador que se alimenta de macrofauna, peces y otros macroinvertebrados principalmente de decápodos. Crece hasta 225 mm (Maldonado-Ocampo et al., 2005).

Categoría: No evaluado (IUCN, 2022).

Distribución: Esta especie habita en el río Magdalena desde su desembocadura hasta Girardot y Bajo Cauca. Se ha reportado en las

cuencas del Río Prado, Coello y en ecosistemas lenticos como el embalse de Prado (Maldonado-Ocampo et al., 2005). Durante él estudió regional del agua fase 1, del departamento del Tolima se registró en la cuenca del río Sabandija.

HERPETOFAUNA

Orden: Anura Familia: Bufonidae Género: Rhinella

Especie: Rhinella humboldti **Nombre común:** Sapo común

Descripción: Es una especie grande, dorso marrón verdoso a marrón, moteado con manchas irregulares color chocolate y marrón claro, tiene además grandes manchas marrón oscuro en la región escapular; vientre color crema moteado con pigmentos oscuros.

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical, se encuentra frecuentemente en áreas con disturbio y alrededor de zonas habitadas por humanos (Reinoso et al., 2014).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se encuentra distribuido en área con disturbio y alrededor de zonas habitadas por humanos (Ernst et al., 2005).

Orden: Anura Familia: Bufonidae Género: Rhinella

Especie: Rhinella margaritifera

Nombre común: Sapo

Descripción: Es una especie grande, dorso

marrón verdoso a marrón.

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical (GIZ et al., 2014). Se encuentran frecuentemente en áreas con

disturbio y alrededor de zonas habitadas por humanos.

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** En Colombia se encuentra distribuido en área por debajo de los 1700 m (Ernst *et al.*, 2005).

Orden: Anura

Familia: Dendrobatidae **Género:** Dendrobates

Especie: Dendrobates truncatus

Nombre común: Rana venenosa de rayas

amarillas

Descripción: Es una especie pequeña, piel del dorso ligeramente granular y lisa sobre el vientre, dorso negro con bandas amarillas o verdosas dorsolaterales completas y laterales incompletas; vientre y lado negros con líneas o vetas curvas azul pálido.

Hábitat: Especie diurna, típica moradora del suelo, presente en habitas con diferente grado de intervención y usualmente cerca de drenaies.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se distribuye en el Valle del río Magdalena, en las tierras bajas alrededor de la terminación de las cordilleras Central y Occidental, hasta el golfo de Urabá, entre 100-1133 m.

Orden: Anura Familia: Hylidae Género: Boana

Especie: Boana platanera

Nombre común: Rana de ojos esmeralda

Descripción: Especie arborícola y de hábitos nocturnos. Se le encuentra generalmente en las hojas de los árboles, de regiones intervenidas. Esta especie utiliza una gran variedad de hábitat, desde bosques semiáridos, bosques y llanos. Estas ranas colocan los huevos en los remansos de las quebradas, en pequeños hoyos

abiertos sobre la arena para que conserven el agua (Duellman, 2001).

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se distribuye en las tierras bajas, tiene una gran variedad de hábitats, desde bosques tropicales húmedos, ambientes semiáridos, praderas, llanos, hábitats intermedios, pastizales y bosques montanos bajos. Es posible encontrar esta especie en ambientes degradados, incluidas zonas asentamientos humanos (Barrio Amorós, 2004).

Orden: Anura

Familia: Leptodactylidae Género: Engystomops

Especie: Engystomops pustulosus **Nombre común:** Rana tungara

Descripción: Es una especie de tamaño medio, adultos entre 21-38 mm de longitud rostrocloaca; El cuerpo es regordete, patas cortas y su dorso presenta manchas pequeñas verrugas. Dorsalmente presente un color parduzco a gris y una delgada línea mediodorsal crema, ventralmente los machos presentan un saco vocal oscurecido, con una línea clara media.

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical, es una especie bastante abundante, se encuentra generalmente en zonas de pastizales y bosque secundario. Es frecuente observar individuos cantando mientras flotan en pequeños charcos o pozos de agua (McCranie y Wilson, 2002).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <1400 m. Se encuentra distribuida en los Andes, Caribe, Orinoquía, Pacífica (Sarmiento, 2010).

Orden: Anura

Familia: Leptodactylidae **Género:** Leptodactylus

Especie: Leptodactylus fragilis

Nombre común: Rana americana de labios

blancos

Descripción: Es una especie de tamaño mediano, adultos entre 31-44 mm de longitud rostro cloaca, rostro puntiagudo y presenta un dorso oscuro manchado o moteado, con cuatro pliegues dorsalmente o muy pequeños, vientre blanco y prominentes tubérculos blancos sobre la superficie inferior del tarso y plata del pie.

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical, especies de hábitos arbóreos, generalmente se encuentra cerca de pozos y charcos de aguas temporalmente en época de lluvia. En áreas perturbadas o abiertas (Dixon, 1987; Heyer, 2002).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se distribuye en los departamentos de Antioquia, Arauca, Atlántico, Bolívar, Cesar, Cundinamarca, Caldas, Córdoba, Huila, Magdalena, Sucre, Tolima y Santander <1000 m. de altitud (Dixon, 2000).

Orden: Anura

Familia: Leptodactylidae Género: Leptodactylus

Especie: Leptodactylus fuscus Nombre común: Rana picuda

Descripción: Es una especie de tamaño mediano; adultos entre 43-52 mm de longitud cloaca. Es una especie fácil de identificar por la forma aguda de su rostro, ausencia de membranas en sus patas y la presencia de seis pliegues dorsolaterales bien marcados. Presenta un dorso moteado o con manchas, y puede tener o no una línea dorsal clara.

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical, especies asociadas a áreas abiertas, se encuentra frecuentemente en zonas de cultivos, pastizales y zonas pantanosas. Su canto es un sonido agudo, generalmente canta desde huecos en la tierra y coloca sus huevos en pequeñas charcas (Wynn y Heyer, 2001).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se encuentra distribuida en los Andes, Amazonía, Orinoquía y en la región Caribe (Barrio Amorós, 2004).

Orden: Anura

Familia: Leptodactylidae Género: Leptodactylus

Especie: Leptodactylus insularum

Nombre común: Rana de la isla de San Miguel

Descripción: Esta es una especie grande, los adultos miden entre 65-90 mm de longitud rostro-cloaca, presenta una coloración dorsal marrón, con marcas oscuras, presenta un par de pliegues dorsolaterales y una línea clara sobre el labio superior, el vientre es blanco.

Hábitat: Zonas de tierras bajas, bosque seco o muy seco tropical, esta especie se encuentra generalmente cerca a cuerpos de agua permanentes, aunque en época de reproducción canta desde cuerpos de agua temporales, donde también se reproducen. Es generalmente de hábitos nocturnos y se alimenta de artrópodos y otros pequeños vertebrados (Sarmiento, 2010).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <500 m. Se encuentra distribuida en los departamentos de Antioquia, Atlántico, Bolívar, Cesar, Cundinamarca, Caldas, Córdoba, Huila, Magdalena, Sucre, Santander y Tolima (De Sá et al., 2014).

Orden: Squamata **Familia:** Dactyloidae

Género: Anolis

Especie: Anolis auratus

Nombre común: Abaniquillo colombiano de la

hierba

Descripción: Esta especie es pequeña, dorsalmente marrón oscuro, con líneas laterales más claras, pupila redondeada y escamas de cuerpo.

Hábitat: Es una especie terrestre, se encuentra generalmente en zonas con hojarasca, debajo de rocas o troncos caídos. Se alimentan básicamente de insectos.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se distribuye en Tolima en fragmentos de bosque seco tropical (Sarmiento, 2010).

Orden: Squamata

Familia: Sphaerodactylidae

Género: Gonatodes

Especie: Gonatodes albogularis

Nombre común: Geko

Descripción: Los machos de esta especie poseen una coloración baste característica, la cabeza es rojo cobrizo a naranja y el cuerpo gris con visos negros. Las hembras son marrón claro con manchas más oscuras. El cuerpo y la cabeza están cubiertas por escamas granulares muy pequeñas, no poseen parpado y sus pupilas es redonda.

Hábitat: Es una especie de hábitos diurnos, se alimenta básicamente de pequeños insectos. Se encuentra frecuentemente en zonas de rastrojos sobre los troncos de los árboles, también es frecuente dentro de casas (Sarmiento, 2010).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: En Colombia se distribuye en la Costa Atlántica, Boyacá, Caldas, Caquetá, Cauca, Cundinamarca, Chocó,

Huila, Magdalena, Norte de Santander, Santander, Putumayo, Tolima y Valle del Cauca.

AVIFAUNA

Orden: Anseriformes Familia: Anatidae Género: Dendrocyana

Especie: Dendrocygna autumnalis **Nombre común:** Iguaza común

Descripción: 43-56 cm. Pico naranja y patas rosadas; cuerpo en general de color pardo, pecho y vientre de color negro; lados de la cabeza y parte superior del cuello café grisáceos. Alas negras con un parche blanco más evidente en vuelo (Hilty y Brown, 2001).

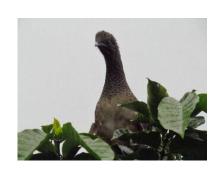
Hábitat: Pantanos y lagunas de agua dulce con cobertura arbórea en sus márgenes, también campos inundados, cultivos y cuerpos de agua salobres (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: Tierras bajas del N hasta el Valle del Cauca y la costa Pacífica. En la Cordillera Oriental <2600 m, desde S de Boyacá hasta la Sabana de Bogotá y en el W de los Andes hasta S Meta y Vaupés (Hilty y Brown, 2001).

Orden: Galliformes Familia: Cracidae Género: Ortalis

Especie: Ortalis columbiana


Nombre común: Guacharaca colombiana

Descripción: 53 cm. Parte anterior del cuello y pecho escamado de blanco. Cola pequeña de color rojo, cabeza grisácea y frente blanca. Cuerpo en general con una coloración café grisácea y patas rosadas. Cola larga color castaño (Hilty y Brown, 2001).

Hábitat: Bosques premontanos, bosques húmedos y

bordes de bosque (Hilty y Brown, 2001).

Distribución nacional: Es una especie endémica de Colombia y se distribuye entre los 100-2500 m. Se encuentra al W de los Andes en los piedemontes del Valle del Cauca y el valle del Magdalena (Hilty y Brown, 2001).

Orden: Columbiformes Familia: Columbidae Género: Leptotila

Especie: Leptotila verreauxi

Nombre común: Caminera rabiblanca o paloma

arroyera

Descripción: Partes dorsales marrón grisáceo. Cola que se ve gris cuando el ave está posada, y oscura con puntas blancas, cuando vuela. Alas sin machas y con la parte inferior rojiza, sólo visible en vuelo. Partes inferiores claras, con un tinte rosado en el pecho. Frente clara y nuca con tinte celeste. Patas rojas (Hilty y Brown, 2001).

Hábitat: En parejas o grandes grupos, en varios tipos de hábitats principalmente urbanos y zonas de siembra de cultivos (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <2700 m (principalmente debajo de 2200 m). Valles medios y alto del Cauca, altos Dagua y Patía. Costa del Pacífico en SW Caucas y ambas pendientes en Nariño; NW Chocó cerca a límite con Panamá E hasta Guajira y S en el valle del Magdalena hasta S del Huila, E de los Andes en Norte de Santander y extremo NE Vichada en Puerto Carreño (Hilty y Brown, 2001).

Orden: Columbiformes Familia: Columbidae Género: Columbina

Especie: Columbina talpacoti

Nombre común: Tortolita común o abuelita

Descripción: 16.5-17.4 cm. M rojizo con cabeza gris claro; frente y garganta blancuzca; cuello, pecho, espalda y rabadilla color castaño purpúreo. H con el pecho liso, sin rojo en el pico, con rabadilla rojiza y cabeza clara. Negro en el forro alar. Iris rojo y

anillo ocular desnudo; pico y cera entre amarillento y parduzco. Patas y dedos color carne (Hilty y Brown, 2001).

Hábitat: Hábitats principalmente urbanos y zonas de siembra de cultivos. Muy común en zonas de rastrojos, sabanas y otros espacios abiertos de clima cálido o templado (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <1600 m, localmente a 2400 m en Cordillera Oriental. Zonas más secas en todo el país (excepto Chocó) (Hilty y Brown, 2001).

Orden: Cuculiformes Familia: Cuculidae Género: Crotophaga

Especie: Crotophaga major

Nombre común: Garrapatero mayor

Descripción: 43-46 cm. Ojos blancos, patas negras y pico negro comprimido lateralmente con culmen arqueado en la base de la mandíbula superior. Adulto color negro-azul lustroso con bordes de las plumas de las alas verde broncíneo y cola con lustre púrpura (Hilty y Brown, 2001).

Hábitat: Matorrales y bosques a lo largo de ríos y arroyos de flujo lento. También utiliza bosques de galería, manglares, márgenes de lagos, pantanos, pastizales, bordes de bosques húmedos, bosques inundables y sabanas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: Principalmente <500 m desde límites con Panamá por la costa Pacífica hacia el S hasta la cuenca media del río San Juan y hacia el E hasta la base W de la Sierra Nevada de Santa Marta. También en el valle del río Cauca, el alto valle del río Magdalena y en general al E de los Andes (Hilty y Brown 2001).

Orden: Cathartiformes Familia: Cathartidae Género: Coragyps

Especie: Coragyps atratus

Nombre común: Gallinazo común

Descripción: 66 cm, hembra más robusta y pesada. Presenta la cabeza y el cuello desprovisto de plumas, la piel es arrugada y oscura, el pico es delgado y débil con coloración marrón oscura y la punta ligeramente blancuzca. El plumaje es negro a excepción de un parche blanco en las plumas de vuelo de las alas. También se caracteriza por tener la cola corta y cuadrada (Hilty y Brown, 2001).

Hábitat: Común en áreas abiertas, bosques en

crecimiento y zonas urbanas.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <2700 m (Hilty y Brown, 2001).

Orden: Accipitriformes Familia: Accipitridae Género: Rupornis

Especie: Rupornis magnirostris

Nombre común: Gavilán caminero o gavilán

pollero

Descripción: 30-38 cm. Ojos, base de la mandíbula superior y patas amarillos; parche rufo en la base de las plumas primarias, el cual es muy conspicuo al vuelo. Cabeza, dorso, garganta y pecho en su parte superior color gris pardusco; vientre barrado color blanco y café. Cola gris a rufa con cuatro o cinco bandas negras y puntas blancas (Hilty y Brown, 2001).

Hábitat: Zonas abiertas y montañas sobre el dosel de los árboles o cercas. Bosques secos y húmedos en crecimiento secundario, sabanas con bosques de galería, rastrojos y zonas abiertas con árboles dispersos. Hábitats tropicales y subtropicales de tierras bajas, excepto en bosques primarios, desiertos y llanuras (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <2600 m en la Sierra Nevada de Santa Marta, el Magdalena Medio, Santander,

Boyacá, costa Pacífica, Antioquia, Nariño y Valle del Cauca. Guajira y región de Santa Marta S hasta valle medio del Magdalena cerca de Bucaramanga, W hasta alto Sinú y costa Pacífica S hasta valle medio de San Juan, resto de la costa pacífica, Valle del Cauca. Valle del Magdalena desde pendiente E de la Cordillera Oriental, Antioquia y S Santander hacia S, y E de los Andes (Hilty y Brown, 2001).

Orden: Galbuliformes Familia: Galbulidae Género: Galbula

Especie: Galbula ruficauda

Nombre común: Jacamar colirufo

Descripción: 28 cm. Pico negro y notoriamente largo. Plumaje verde metálico cobrizo en el dorso, el rostro, las alas. Pecho con una banda pectoral del mismo color, sobresaliendo una línea blanca en su garganta. Plumas primarias negras; cola larga y gradada, con las plumas centrales más largas de color verde metálico y resto de plumas rufas al igual que el vientre y los flancos (Hilty y Brown, 2001).

Hábitat: Bordes de bosques húmedos, deciduos y semiáridos, bosques en crecimiento secundario, bordes de arroyos, guaduales, plantaciones, sabanas con árboles dispersos y bosques de galería (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** <900 m en la vertiente Pacífica y <1300 m en el Valle del Magdalena (Hilty

y Brown, 2001).

Orden: Falconiformes Familia: Falconidae Género: Herpetotheres

Especie: Herpetotheres cachinnans **Nombre común:** Halcón culebrero

Descripción: 46-56 cm. Cabeza grande, alas cortas y redondeadas; cabeza y partes inferiores color ante pálido; máscara negra alrededor de toda la cabeza; parte dorsal color café oscuro con bandas blancas (Hilty y Brown, 2001).

Hábitat: Zonas abiertas. Poco común en los bordes de bosques, bosque riparios y áreas semiabiertas con árboles dispersos (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <2400 m en todo el país (Hilty

y Brown, 2001).

Orden: Falconiformes Familia: Falconidae Género: Caracara

Especie: Caracara plancus

Nombre común: Guaraguaco paramuno

Descripción: 51-56 cm. Patrón nítido. Alas largas, más estrechas en el extremo, cola larga, redondeada, cresta ensortijada. Piel facial desnuda y arrugada, garganta rojo naranja; pico y patas amarillas. Principalmente negro, pecho ampliamente estriado de blanco; tibias, partes inferiores bajas, supracaudales y extremo de la cola blancos (Hilty y Brown, 2001).

Hábitat: Común en sabanas de páramo y otras áreas altas abiertas y con árboles dispersos (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <3000 m. Todo el país menos en la Costa Pacífica, en la región de Urabá y regiones selváticas al sur del río Guaviare (Hilty y Brown, 2001).

Orden: Falconiformes Familia: Falconidae Género: Milvago

Especie: Milvago chimachima

Nombre común: Pigua

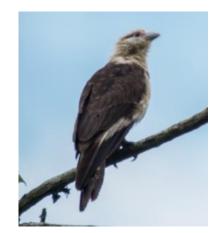
Descripción: 41-46 cm. Cola más bien larga, y "ventana" grande de color ante en las primarias. Cabeza, región inferior y el forro de las alas color ante claro. Línea postocular negra. Espalda, parte superior de las alas y área bajo las secundarias café oscuro. Cola blancuzca barreteada con negro y banda subterminal ancha y color negro. Pico y patas entre azul claro y verdoso; cera y parte desnuda de la cara entre amarillo y rojizo (Hilty y Brown, 2001).

Hábitat: Zonas abiertas y poco boscosas, borde de bosque y caminos, algunas veces vista al borde de quebradas, ríos y embalses, solitaria y comúnmente ubicada en la parte alta de árboles con poco follaje y en el subdosel (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <1800 m, raramente 2600 m.

Ampliamente distribuida en todo el país excepto en Nariño (Hilty y Brown 2001).


Orden: Psittaciformes Familia: Psittacidae Género: Amazona

Especie: Amazona ochrocephala **Nombre común:** Lora común

Descripción: 35-38 cm. Plumaje verde con el pico pálido, frente y centro de la coronilla amarillos. Rémiges con ápice azul, parche rojo en los hombros y en las secundarias. Cola con puntas amarillas y basalmente roja en las plumas externas (Hilty y Brown, 2001).

Hábitat: Selvas secas abiertas y bordes de bosque húmedos, bosques de galería. Áreas pantanosas o más abiertas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <500 m, en el N del Chocó desde límite con Panamá y hacia el E a través de

la mayor parte de tierras bajas. Al N de los Andes en las bases W y SE de la Sierra Nevada de Santa Marta y la base W de la Serranía de Perijá. Al S está en el alto valle del Magdalena en Huila, en la base E de la Cordillera Oriental en Caquetá y Putumayo y al E de los Andes probablemente en el S hasta Amazonas (Hilty y Brown, 2001).

Orden: Psittaciformes Familia: Psittacidae Género: Forpus

Especie: Forpus conspicillatus

Nombre común: Periquito de anteojos

Descripción: 12.8 cm. Pico marfil, machos con cuerpo principalmente verde tornándose amarillento hacia las partes inferiores. Región ocular azul. Cobertoras alares superiores e inferiores y rabadilla color azul violeta. Parte inferior de las rémiges verde azuloso. Plumaje en hembras enteramente verde brillante (Hilty y Brown, 2001).

Hábitat: Áreas cultivadas semiabiertas, montes y claros con árboles dispersos (Hilty y Brown, 2001). **Categoría:** Preocupación menor (IUCN, 2022).

Distribución nacional: 200-1800 m (Hilty y Brown,

2001).

Orden: Passeriformes Familia: Thamnophilidae Género: Thamnophilus

Especie: Thamnophilus doliatus

Nombre común: Batará barrado o batará

carcajada

Descripción: 16 cm. Iris amarillo pálido y cresta despelucada. M con plumas de la coronilla negras con base blanca y el resto de la región superior negra, con un barreteado blanco y burdo. Listado blanco y negro borroso en lados de la cabeza y garganta; resto de la región inferior barreteada blanco y negro grueso uniforme. H con coronilla castaño rufo y resto de la región superior rufa. Listado blanco y negro borroso en lados de la cabeza y collar nucal. Por debajo ante más claro

en garganta y abdomen. Lados de garganta y parte anterior del cuello con salpicado negro escaso. Pecho escamado y manchado tiznado leve. Maxila negruzca, mandíbula gris azulado y patas plomizas (Hilty y Brown, 2001).

Hábitat: Interior y bordes de bosques, bosques secundarios, bosques deciduos y bosques de galería (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <1500 m. Se encuentra en el W de Cundinamarca, en el SE de Boyacá. Golfo de Urabá E hasta el W de la Guajira y S en todo el valle del Magdalena hasta el S de Huila; E de los Andes hasta Amazonas (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Thamnophilidae Género: Myrmeciza

Especie: Myrmeciza longipes

Nombre común: Hormiguero pechiblanco

Descripción: 14.5-15.5 cm. Ambos sexos presentan patas largas de color carne, pico moderadamente largo, ojos rojo oscuro y un estrecho anillo ocular azul. Macho: Rufo brillante por encima; lados de la cabeza, garganta y pecho de color negro bordeados por una lista ocular gris que se extiende desde la frente hacia los lados del cuello. Pecho y abdomen blancos y flancos lavados de canela. Hembra: Castaño rufo por encima con una barra negra subterminal en las cobertoras alares. Frente y lista ocular grises, mejillas negruzcas con las partes inferiores blancas fuertemente lavadas de ocráceo en el pecho y los lados (Hilty y Brown, 2001).

Hábitat: Sotobosque de bosques secos o relativamente húmedos, bosques de galería y bosques en estado de sucesión secundaria (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <1700 m, desde el E de Córdoba la Serranía de San Jacinto hasta la Guajira y el valle medio del Magdalena. También se encuentra en el E de Norte de Santander y en el N de Arauca (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Tyrannidae Género: Todirostrum

Especie: Todirostrum cinereum **Nombre común:** Espatulilla común

Descripción: 9.7 cm. Tamaño pequeño, vistoso por la posición levantada de su cola y sus ojos blancuzcos como amarillentos muy claros. Pico negro, largo y achatado. Parte media de los lados de la cabeza y frente negro gradado a gris ahumada, espalda y rabadilla oliva, garganta y abdomen amarillo (Hilty y Brown, 2001).

Hábitat: Común en áreas abiertas y bordes de bosque, manglares y ríos. También en matorrales, pastizales, cultivos, jardines y claros enrastrojados en áreas selváticas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Entre 1400-3000 m. Distribuido principalmente en toda la Cordillera Central, hacia el S en la Cordillera Occidental y hacia el N en la

Cordillera Oriental (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Tyrannidae Género: Elaenia

Especie: Elaenia flavogaster

Nombre común: Elaenia copetona

Descripción: 16.5 cm. Pico corto con mandíbula inferior blanquecina. Anillo ocular blanquecino. Cresta que permite observar parche blanco. Café tenue por encima y márgenes de las plumas de las alas de color claro. Pecho café pálido y abdomen amarillo pálido (Hilty y Brown, 2001).

Hábitat: Zonas húmedas y áridas, hábitats boscosos, vegetación en crecimiento secundario, bordes de bosque, matorrales, sabanas, áreas con árboles dispersos como parques y jardines en ciudades (Hilty y Brown, 2001).

Distribución nacional: <2100 m. Generalmente no hay registros en tierras bajas del NW (Pacífico) ni en el Amazonas (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Tyrannidae Género: Pitangus

Especie: *Pitangus sulphuratus* **Nombre común:** Bichofué gritón

Descripción: 22 cm. Hombros anchos y cola corta; pico negro robusto. Coronilla negra circundada por amplia banda blanca; parche amarillo oculto en la coronilla; lados de la cabeza negros; pequeña mancha amarilla en la mejilla; resto café por encima, alas y cola con márgenes rufos; garganta blanca; resto de partes inferiores amarillo brillante (Hilty y Brown, 2001).

Hábitat: Claros y áreas cultivadas con árboles, especialmente cerca del agua. A veces poco común en zonas selváticas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <1500 m. En todo el país excepto W de la Cordillera Occidental (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Tyrannidae Género: Megarynchus

Especie: Megarynchus pitangua

Nombre común: Atrapamoscas picudo

Descripción: 23 cm. Pico negro corto. Partes superiores café en contraste con coronilla y lados de la cabeza negros, largas superciliares blancas (no circundan la cabeza); parche naranja dorado oculto en la coronilla; rémiges estrechamente marginadas de rufo; garganta blanca, resto de partes inferiores amarillo brillante (Hilty y Brown, 2001).

Hábitat: Bordes de selva, claros y mayoría de hábitats semiabiertos especialmente cerca de

agua (Hilty y Brown, 2001).

Distribución nacional: <1400 m. NW Chocó S hasta río Juradó; tierras bajas del Caribe hasta Guajira, S por valle del Magdalena hasta Huila; en general E de los Andes (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Tyrannidae Género: Myiozetetes

Especie: Myiozetetes cayanensis **Nombre común:** Suelda crestinegra

Descripción: 17 cm. Pico negro y corto; dorso café en contraste con coronilla y lados de la cabeza negros. Largas superciliares blancas y parche de plumas naranja dorado oculto en la coronilla. Rémiges marginadas de rufo, garganta blanca y resto de las partes inferiores amarillo brillante (Hilty y Brown, 2001).

Hábitat: Común en bordes de selva, claros y en la mayoría de los hábitats semiabiertos, especialmente cerca del agua; a menudo en áreas residenciales o cultivadas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <900 m (<1200 en vertiente E de la Cordillera Oriental). Tierras bajas del Caribe desde el río Sinú E hasta Guajira, todo valle del Magdalena, Norte de Santander (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Tyrannidae Género: Tyrannus

Especie: Tyrannus melancholicus Nombre común: Sirirí común

Descripción: Longitud de 22 cm. Cabeza gris con máscara negruzca; parche naranja oculto en la coronilla; espalda oliva grisáceo; alas y cola ligeramente ahorquillada café negruzco; garganta gris pálido; bajas partes inferiores amarillas con fuerte lavado oliva en el pecho (Hilty y Brown, 2001).

Hábitat: Terrenos abiertos o semiabiertos con árboles dispersos, también en áreas residenciales y en claros y orillas de ríos en zonas selváticas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <2800 m. Es una de las aves más comunes y conspicuas de terrenos abiertos o semiabiertos con árboles (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Vireonidae Género: Cyclarhis

Especie: Cyclarhis gujanensis

Nombre común: Verderón cejirrufo

Descripción: De 15 cm. Cabeza grande, pico robusto y ganchudo café amarillento. Plumaje del dorso verde oliva, coronilla, mejillas y parte superior de la garganta color gris claro. Baja garganta y pecho amarillento, partes inferiores blanquecinas, patas rosa y ojos naranjas (Hilty y Brown, 2001).

Hábitat: Interiores de bosque (Hilty y Brown, 2001). **Categoría:** Preocupación menor (IUCN, 2022).

Distribución nacional: <1800 m, se extiende desde las tierras bajas del Caribe desde el N de Sucre hasta la Guajira. También está presente en el valle del Magdalena hasta la Serranía de la Macarena (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Vireonidae Género: Hylophilus

Especie: Hylophilus flavipes

Nombre común: Verderón rastrojero

Descripción: 11.4 cm. Pico y patas de color carne; ojos blanquecinos. Verde oliva a oliva pardusco por encima, ligeramente más oscuro en la coronilla; garganta blanquecino opaco; resto amarillento opaco debajo, más pálido en abdomen y con tinte ante en el pecho (Hilty y Brown, 2001).

Hábitat: Matorrales áridos y bosques más ligero y seco para bosque húmedo (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Se ha registrado <1000 m, en el lado E del Golfo de Urabá y valle medio del Sinú, por tierras bajas del Caribe hasta Guajira, parte E de los Andes desde Norte de Santander hasta Meta (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Corvidae Género: Cyanocorax

Especie: Cyanocorax affinis

Nombre común: Carriquí pechiblanco

Descripción: Ave muy llamativa por su tamaño (33 cm), colores contrastantes y ojos amarillos. La coronilla, los lados de la cabeza, garganta y alto pecho son negros; posee una mancha encima y debajo del ojo de color azul brillante; la nuca y partes superiores son de color café-violeta; las alas y la cola son azul oscuro, estos colores contrastan con el blanco de sus partes inferiores y el de la punta de la cola (Hilty y Brown, 2001).

Hábitat: Es muy común observarla en grupos hasta de ocho individuos, juntos se desplazan por ramas medias y altas del bosque y roban polluelos de los nidos de otras aves para alimentarse. Se desplaza lentamente entre las ramas de árboles aislados en potreros y por bordes en parches y bosque de galería (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: Se puede encontrar <2200 m en el S de la Costa Pacífica, tierras bajas al N de los Andes hasta Santa Marta, al S en Valle del Cauca hasta Medellín y en el valle del Magdalena hasta el S del Tolima (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Troglodytidae Género: Cantorchilus

Especie: Cantorchilus leucotis

Nombre común: Cucarachero común

Descripción: 14 cm. Café rojizo por encima con prominente superciliar blanca; alas y cola barradas

de negro; lados de la cabeza blancos estriados de negruzco; garganta blanca; pecho ante gradado a ante canela en abdomen; infracaudales canela intenso uniforme (Hilty y Brown, 2001).

Hábitat: Matorrales en bordes de selva; arroyos y claros en regiones secas a húmedas, várzea y manglares; a menudo cerca del agua (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <600 m. En todo el país (Hilty

y Brown, 2001).

Orden: Passeriformes Familia: Polioptilidae Género: Polioptila

Especie: Polioptila plumbea

Nombre común: Curruca tropical

Descripción: Su longitud máxima es de 12 cm. De pico corto cuerpo esbelto. У delaado. generalmente mantiene la cola en posición erecta. Los sexos son ligeramente diferentes. El macho, tiene la corona y la nuca de color negro lustroso adornado con una línea superciliar blanca. Dorsalmente es de color gris oscuro, las mejillas, lados de la cabeza y el abdomen es de color blanco con el pecho teñido de gris. La hembra por su parte, se distingue del macho solo en el color gris de su corona y nuca. Ambos sexos tienen las rémiges negras bordeadas de blanco y la cola negra con las plumas externas también blancas (Hilty y Brown, 2001).

Hábitat: Su rango de hábitat es muy amplio e incluye bosque lluvioso maduro, bosques inundables, matorrales áridos, bordes de bosque, manglares, sabanas, plantaciones de café, sabanas y manglares (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: < 1 600 m en la Costa Pacífica, desde el alto valle del Sinú hacia el norte por tierras bajas hasta la base de la Sierra Nevada de Santa Marta y desde allí hasta el sur de Bolívar. Valle medio y alto del río Magdalena hasta el sur en el Huila. Abarca también los Andes desde el sur de

Norte de Santander hasta nororiente de Meta, oriente de Vichada nororiente de Guainía y Amazonas (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Turdidae Género: Turdus

Especie: Turdus leucomelas

Nombre común: Mirla ventriblanca

Descripción: 24 cm. Por encima es de color café oliva pálido en contraste con el gris de su cabeza y nuca. Tiene auriculares finamente estriados de blanquecino. Garganta blanca estriada de café oscuro. En el pecho y lados destaca un color gris anteado pálido. El centro del abdomen e infracaudales son blancos. Las cobertoras alares internas son de color rufo canela y su pico café amarillento (Hilty y Brown, 2001).

Hábitat: Es común y conspicuo en áreas ocupadas por el hombre. Común encontrarlo en claros, parques, jardines y montes claros, ocasionalmente en selva húmeda o bordes (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: Se encuentra en todo el territorio nacional y puede llegar <1600m en regiones como la Sierra nevada de Santa Marta, Serranía de Macuira, Guajira, y la Serranía de Perijá (Hilty y Brown 2001).

Orden: Passeriformes Familia: Parulidae Género: Myiothlypis

Especie: Myiothlypis fulvicauda **Nombre común:** Arañero ribereño

Descripción: 14.5 cm. Cuerpo dorsalmente color verde oliva oscuro; coronilla color más oscuro; vientre y cola beige oscuro; garganta y partes inferiores de color blanco; superciliar de color beige muy pálido (Hilty y Brown, 2001).

Hábitat: Común en arroyos de bosques, charcas, ocasionalmente áreas anegadas en el interior de

bosque pero raramente lejos de agua (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <1000 m. Costa Pacífica y desde Golfo de Urabá, al E hasta valle medio del Urabá al S hasta el S del Huila. E de los Andes desde W del Meta hacia el S de Honduras hasta el NE del Perú (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Thraupidae Género: Volatinia

Especie: Volatinia jacarina

Nombre común: Volantinero negro o saltarín negro

Descripción: 10-12 cm. Pico corto y claro. M negro azul brillante; H parda con listas pardo oscuro, alas y cola pardas oscuras (Hilty y Brown, 2001).

Hábitat: Zonas arbustivas y enmalezadas, en matorrales, pastizales y bordes de carretera (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución: <2200 m. En todo el país principalmente en zonas bajas. Ausente algunas veces en selva (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Thraupidae Género: Melanospiza

Especie: Melanospiza bicolor

Nombre común: Semillero pechinegro

Descripción: 10.2 cm. Pico pardusco encima, amarillo opaco debajo. M encima oliva opaco; frente, lados de la cabeza, garganta y pecho negro hollín a gris en abdomen; flancos teñidos oliva. H gris oliva pálido, más pálido debajo gradado a blanquecino en el centro del abdomen (Hilty y Brown, 2001).

Hábitat: Matorrales áridos, monte espinoso bajo, árido y deciduo, sabana seca con arbustos dispersos (Hilty y Brown, 2001).

Distribución nacional: <1300 m. Península de la Guajira hasta base SE de Sierra de Santa Marta; vertiente W de Cordillera oriental, S hasta alto Magdalena (Hilty y Brown, 2001).

Orden: Passeriformes Familia: Thraupidae Género: Thraupis

Especie: Thraupis episcopus **Nombre común:** Azulejo común

Descripción: 16.8 cm. Cabeza, cuello y partes inferiores gris azuloso, alta espalda más oscura y más azul; alas y cola marginadas de azul, hombros azul claro a oscuro (Hilty y Brown, 2001).

Hábitat: Bosques húmedos de tierras bajas en donde se observa en el dosel y en bordes. Plantaciones, matorrales, áreas abiertas con árboles dispersos y sabanas (Hilty y Brown, 2001).

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <2600 m. Usualmente <200 m SW de Cauca y Nariño resto de Colombia al W de los Andes incluido Santa Marta y base E de los Andes en N de Santander y NE de Cauca, E de los Andes en el W de Casanare y Meta, W de Vichada a lo largo del Orinoco, Vaupés y sin duda Guainía; S del Caquetá hasta el Amazonas (Hilty y Brown 2001).

MASTOFAUNA

Orden: Didelphimorphia Familia: Didelphidae Género: Chironectes

Especie: Chironectes minimus

Nombre común: Zarigüeya de agua

Descripción: Especie solitaria es nocturna, terrestre y semiacuática, es carnívora, come pequeños peces, cangrejos, crustáceos, insectos que atrapa en el agua y ocasionalmente ranas. La presa se captura con las patas delanteras o con la boca (Sarmiento, 2010).

Hábitat: La especie vive en áreas de cursos de agua permanentes como arroyos o ríos, generalmente con cubierta forestal, aunque se ha encontrado en plantaciones y otros hábitats perturbados.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <1860 m. Tienen gran capacidad de adaptación a diferentes hábitats, se pueden avistar desde tierras bajas.

Orden: Didelphimorphia Familia: Didelphidae Género: Marmosa

Especie: Marmosa robinson

Nombre común: Zarigüeya ratón de Robinson

Descripción: 10-16 cm. Su pelaje es suave y aterciopelado, de color pardo o gris oscuro dorsalmente, con tonos rojizos, blanco amarillento en el cuello, pecho y vientre. Ojos rodeados de pelaje color oscuro (Naranjo et al., 2003).

Hábitat: Nocturno y crepuscular, arborícola a veces desciende al suelo, se alimenta de insectos, invertebrados, frutos y pequeños vertebrados. Está asociado a ciénagas, humedales y pantanos.

Categoría: Preocupación menor (IUCN, 2022).

Distribución nacional: <2600 m. Bosques húmedos y secos tropicales.

Orden: Cingulata Familia: Dasypodidae Género: Dasypus

Especie: Dasypus novemcinctus **Nombre común:** Armadillo, gurre

Descripción: Es una especie muy adaptable que habita una gran variedad de hábitats; presenta altas tasas de reproducción

Hábitat: bosques de tierras bajas, bosques secos

de tierras bajas y matorrales

Distribución nacional: <3100 m. Bosques

tropicales, principalmente húmedos.

Orden: Chiroptera

Familia: Emballonuridae Género: Saccopteryx

Especie: Saccopteryx bilineata

Nombre común: Murciélago de alas de saco

mayor

Descripción: Se diferencia de murciélagos similares por su pelaje oscuro con dos líneas claras en la parte dorsal (Sarmiento, 2010).

Hábitat: Son cazadores de insectos que habitan fácilmente en construcciones humanas. Sus colonias se componen regularmente de 15 individuos.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <500 m. Bosques húmedos y seco tropicales de tierras bajas (Sarmiento, 2010).

Orden: Chiroptera

Familia: Emballonuridae **Género:** Saccopteryx

Especie: Saccopteryx leptura

Nombre común: Murciélago de alas de saco

menor

Descripción: Externamente es muy similar a *S. bilineata y comparte con ella las líneas claras dorsales, pero es más pequeña y de coloración más oscura (Sarmiento, 2010).*

Hábitat: Caza insectos blandos. Habita en colonias muy pequeñas de 2-3 individuos, aunque se han observado en grupos de nueve murciélagos. Puede anidar en conjunto con otras especies de murciélagos. Prefiere cazar insectos en zonas boscosas.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: <1000 m. Bosques

tropicales, principalmente húmedos.

Orden: Chiroptera **Familia:** Phyllostomidae

Género: Carollia

Especie: Carollia brevicauda

Nombre común: Murciélago sedoso de cola

corta

Descripción: 10-16 cm. Su pelaje es suave y aterciopelado, de color pardo o gris obscuro dorsalmente (Sarmiento, 2010).

Hábitat: Se alimenta de una variedad de frutos dependiendo la región y la estacionalidad (Gardner, 2007).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Es abundante en las tierras bajas y parece ser más común en áreas perturbadas (Sarmiento, 2010).

Orden: Chiroptera **Familia:** Phyllostomidae

Género: Carollia

Especie: Carollia perspicillata

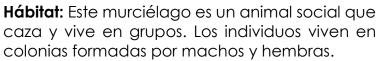
Nombre común: Murciélago de cola corta de

Seba

Descripción: 12-17 cm. Su pelaje es suave y de color pardo claro dorsalmente.

Hábitat: Se encuentra en sotobosque y túneles. Tolera el contacto cercano con los humanos más que otras especies del género. Demuestran una fuerte preferencia por las plantas de la familia Piperaceae, pero también se alimenta de muchas otras familias (García-Herrera et al., 2019). También se pueden alimentar de néctar, polen e insectos en temporadas de escasez de frutos.

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** Es abundante en las tierras bajas y parece ser más común en áreas perturbadas (Gardner, 2007).



Orden: Chiroptera Familia: Phyllostomidae Género: Desmodus

Especie: Desmodus rotundus

Nombre común: Murciélago vampiro

Descripción: El color del pelaje dorsal es más oscuro que el pelaje ventral y está claramente delimitado a lo largo de la línea desde el ala hasta cerca de la base de la oreja; color ventral generalmente gris plateado. La fase grisácea es la más común, pero también hay fases roja, dorada y naranja. Medidas (en mm) para adultos: largo de cabeza y cuerpo, 69-90; longitud del antebrazo, 52-63; longitud del pulgar, 16-20; peso, 25-40 g. Las hembras son más grandes y más pesadas que los machos en casi todas las características.

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** Es abundante en las tierras bajas y parece ser más común en áreas perturbadas (Gardner, 2007).

Orden: Chiroptera Familia: Phyllostomidae Género: Phylloderma

Especie: Phylloderma stenops

Nombre común: Murciélago pálido

Descripción: La mayoría de los murciélagos filostominos (Chiroptera: Phyllostomidae) se consideran principalmente insectívoros y carnívoros. Sin embargo, el clado Phylloderma es una excepción; esta especie se alimenta en gran parte de frutas y néctar (Heather *et al.*, 2008)

Hábitat: Es poco conocido. Está fuertemente asociado con los bosques siempreverdes tropicales multiestratales, pero tolera ampliamente los desmontes hechos por el hombre. La supervivencia y germinación de

semillas ingeridas indican que este murciélago puede ser un dispersor eficaz para las plantas que come, habita en árboles y cuevas.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Es abundante en las tierras bajas (Gardner, 2007). Se distribuye < 2600 m.

Orden: Chiroptera Familia: Phyllostomidae Género: Phyllostomus

Especie: Phyllostomus discolor

Nombre común: Murciélago lanza pálido

Descripción: El pelaje es marrón parduzco oscuro. La hoja nasal es larga. Las patas son largas y tienen uñas grandes.

Hábitat: Se encuentra en todo tipo de hábitats. **Categoría:** Preocupación menor (IUCN, 2022). **Distribución nacional:** Es abundante en las tierras

bajas (Gardner, 2007).

Orden: Chiroptera

Familia: Phyllostomidae

Género: Artibeus

Especie: Artibeus lituratus

Nombre común: Gran murciélago frugívoro

Descripción: Esta especie se alimenta preferiblemente de frutos, utiliza refugios como grandes hojas, ramas, cuevas, puentes y túneles (Gardner, 2008).

Hábitat: Bosques húmedos y secos, tropicales y subtropicales.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Es abundante en las tierras

bajas.

Orden: Chiroptera
Familia: Phyllostomidae

Género: Sturnira

Especie: Sturnira giannae

Nombre común: Murciélago de hombros

amarillos

Descripción: El pelaje es de castaño claro. Las orejas son puntiagudas. Presenta hoja nasal. No tiene uropatagio.

Hábitat: Su dieta se basa en frutos e insectos. **Categoría:** Preocupación menor (IUCN, 2022). **Distribución nacional:** Bosques húmedos y secos, tropicales y subtropicales. Se encuentra desde Costa Rica hasta Perú hasta 1990 m.

Orden: Chiroptera Familia: Molossidae Género: Molossus

Especie: Molossus molossus

Nombre común: Moloso moloso

Descripción: El pelaje del dorso es largo y bicolor (>2.5 mm) y de color marrón grisáceo a marrón pálido, de color blanco en la base, sin aspecto escarchado; membrana caudal y alar de color negro; los incisivos superiores son pequeños.

Hábitat: Se encuentra en zonas urbanas. Grandes colonias se encuentran en hojas de palma como refugios (Barquez com. pers.). Se posan en áticos en las islas (Rodríguez Durán com. pers.).

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Es abundante en las tierras bajas y parece ser más común en áreas urbanas.

Orden: Chiroptera

Familia: Vespertillionidae

Género: Myotis

Especie: Myotis nigricans

Nombre común: Murciélago amarillo de Thomas

Descripción: Es una especie de tamaño medio dentro del género (largo de antebrazo= 36.1-38.4 mm; peso= 4.5-6.3 g), de pelaje sedoso, moderadamente largo (6-7 mm en el dorso; 5-6 mm en el vientre), el pelaje dorsal es bicolor con bases negras y las puntas marrones; el pelaje ventral parece amarillento (Gardner, 2008).

Hábitat: Es la especie más abundante y ampliamente distribuida del género en América del Sur. Esta especie se encuentra prácticamente en todas las asociaciones de bosques tropicales y subtropicales del mapa de vegetación, así como en áreas de sabana y matorral.

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** <1000 m. Bosques tropicales húmedos y secos.

Orden: Chiroptera

Familia: Vespertillionidae Género: Rhogeessa Especie: Rhogeessa io

Nombre común: Murciélago amarillo de Thomas

Descripción: Su pelaje es amarillo oscuro. Sus orejas son relativamente largas y no tiene hoja nasal.

Hábitat: Caza insectos blandos (Ramírez-Francel

et al., 2021)

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** <1000 m. Bosques tropicales húmedos y secos. Habita en bosques secundarios.

Orden: Carnívora Familia: Canidae Género: Cerdocyon

Especie: Cerdocyon thous

Nombre común: Zorro cangrejero

Descripción: Su pelaje de color pardo o gris oscuro dorsalmente.

Hábitat: Nocturno y crepuscular. Los zorros cangrejeros se registraron con mayor frecuencia en los hábitats más espesos, los bosques de galería y los matorrales sin ganado, en los humedales (Di Bitetti et al., 2009).

Categoría: Preocupación menor (IUCN, 2022). **Distribución nacional:** Esta especie ocupa la mayoría de los hábitats, incluidos pantanos, sabanas, cerrado, caatinga, transiciones

chaco-cerrado-caatinga, matorrales, bosques, bosques secos y semicaducifolios, bosque de galería, bosque atlántico, bosque de araucaria, sabana aislada dentro del bosque amazónico de tierras bajas y montano. Hay registros <3000 m.

Orden: Carnívora Familia: Mustelidae Género: Cerdocyon

Especie: Lontra longicaudis **Nombre común:** Nutria de río

Descripción: Su pelaje de color pardo o gris oscuro dorsalmente.

Hábitat: Nocturno y crepuscular, se encuentra en ambientes acuáticos como ríos, arroyos, lagos, lagunas, estuarios, manglares, marismas y costas.

Categoría: Casi amenazada (IUCN, 2022). Apéndices II según el CITES.

Distribución nacional: Hay registros ocasionales en elevaciones más altas en las laderas orientales húmedas de los Andes, llegando <3200 m.

Orden: Primates Familia: Aotidae Género: Aotus

Especie: Aotus griseimembra **Nombre común:** Mono nocturno

Descripción: Presentan hábitos nocturnos y socialmente monógamos. Habita distintos tipos de bosques (Defler, 2010).

Hábitat: Nocturno y crepuscular. Se registra en la selva tropical de tierras bajas en el centro de Colombia, fragmento de bosque comprende un bosque inundable, estos fragmentos hacen parte de un mosaico de pequeños fragmentos de bosque y pastizales utilizados para la ganadería y sabanas inundables naturalmente (Montilla et al., 2021).

Distribución nacional: <1000 m. Selvas tropicales de Colombia y Venezuela (Defler, 2010; Link *et al.*, 2019; Morales-Jiménez y de la Torre, 2008; Montilla *et al.*, 2021).

Orden: Rodentia Familia: Sciuridae Género: Notosciurus

Especie: Notosciurus granatensis

Nombre común: Ardilla

Descripción: El pelaje es denso, liso y brillante con el dorso marrón rojizo pasando a pálido o anaranjado. Su cola es peluda.

Hábitat: Se alimenta de frutos, semillas e insectos. Son activos durante la noche.

Categoría: Preocupación menor (IUCN, 2022). Distribución nacional: Esta ardilla habita en muchos tipos de bosques desde el nivel del mar hasta los montanos, y desde áreas de picnic hasta buenos bosques.

BIBLIOGRAFÍA

- Acosta-Galvis, A. R. (2021). Lista de los Anfibios de Colombia, Referencia en línea V. 11.2021 (26/06/2021). Página web accesible en Http://www.batrachia.com, Batrachia, Villa de Leyva, Boyacá, Colombia.
- Adamus, P., Danielson, T. J. y Gonyaw, A. (1991). Indicators for Monitoring Biological Integrity of Inland, Freshwater Wetlands. Washington D.C., U.S.A., Environmental Protection Agency.
- Aguilar, V. (2003). Aguas continentales y diversidad biológica de México, un recuento actual. Biodiversitas, 48, 2-16.
- Aizen, M. A., Vázquez, D. y Smith, C. (2002)."Historia natural y conservación de los mutualismos planta-animal del bosque templado de Sudamérica austral", Revista chilena de historia natural, vol. 75, Pp. 7997,
- Alberti, M. y Parker, J. (1991). Indices of environmental quality, the search for credible measures. Environ. Impact Assess. Rev. 11, 95-101.
- Albornoz-Garzón, J. G. y Conde-Saldaña, C. C. (2014). Diversidad y Relaciones Ecomorfológicas de la Comunidad Íctica de la Cuenca del Rio Alvarado, Tolima, Colombia. [Tesis de pregrado, Universidad del Tolima, Facultad de Ciencias, Programa De Biología]. Ibagué-Tolima.
- Alford, M. H. (2022, Junio). Casearia corymbosa Kunth En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia. unal.edu.co
- American Ornithologist Union (AOU) (1998). Check-list of North American birds. Washington D.C., U.S.A., American Ornithologist's Union.
- Andrade, G. I. (1998). Los humedales del altiplano de Cundinamarca y Boyacá. Ecosistemas en peligro de desaparecer. En, E. Guerrero (Ed.). Una aproximación a los humedales en Colombia (pp. 59-72). Editora Guadalupe Ltda., Bogotá.
- Andrade-C, G. (2002). Biodiversidad de las mariposas (Lepidóptera, Rhopalocera) de Colombia. Boletín de la Sociedad Entomológica Aragonesa, 2, 153-172.
- Andrade-C., M. (2002). Monografías Tercer Milenio. En SEA Ed. Biodiversidad de las mariposas (Lepidoptera, Rhopalocera) de Colombia, vol. 2. Zaragoza.
- Andrade-C., M., Campos-Salazar, L. R., González-Montana, L. A. y Pulido-B., H. W. (2007). Santa María mariposas alas y color. Serie de Guias de campo del Instituto de Ciencias Naturales No. 2. Bogotá, Instituto de Ciencias Naturales, Universidad Nacional de Colombia.
- Andrade-C., M. (2011). Estado del conocimiento de la biodiversidad en Colombia y sus amenazas. Consideraciones para fortalecer la interacción ambiente-política. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35(137), 491-507.

- Andrade-C., M. y Gonzalo, M. (2011). Estado de conocimiento de la biodiversidad en Colombia y sus amenazas. Consideraciones para fortalecer la interacción Ciencia Política. Revista de la academia colombiana de ciencias, 35 (137), 491-507.
- Andrade-C., M., Henao-Bañol, E. y Triviño, P. (2013). Técnicas y Procesamiento para la Recolección, Preservación y Montaje de Mariposas en estudios de Biodiversidad y Conservacion (Lepidoptera, Hesperioidea-Papilionoidea). Rev. Acad. Colomb. Cienc, 37 (144), 311-325.
- Angulo A., Rueda-Almonacid, J. V., Rodríguez-Mahecha, J. V. y La Marca, E (Eds.) (2006). Técnicas de inventario y monitoreo para los anfibios de la región tropical andina. Conservación Internacional. Serie Manuales de campo #2. Bogotá D.C., Colombia, Panamericana Formas e Impresos S. A.
- Angulo, A. (2002). Anfibios y paradojas, Perspectivas sobre la diversidad y las poblaciones de anfibios. Ecología Aplicada, 1(1), 105-109.
- Angulo, A., Rueda-Almonacid, J. V., Rodríguez-Mahecha J. V. y Marca, E. L. A. (2006). Técnicas de inventario y monitoreo para los anfibios de la región tropical andina. Conservación Internacional-Colombia, Series Manuales de Campo No. 2, Panamericana Formas e Impresos S. A., Bogotá D.C. 298 Pp.
- Aranda, M. (2000). Huellas y otros rastros de los mamíferos medianos y grandes de México. Veracruz. México, Primera edición. Ed. Instituto de ecología. A. C.
- Asociación Colombiana de Ornitología (ACO) (2020). Lista de referencia de especies de aves de Colombia-2020. v2. Asociación Colombiana de Ornitología. Http://doi.org/10.15472/qhsz0p.
- Avendaño, J. E., Bohórquez, I. C., Rosselli, L., Arzuza-Buelvas, D., Estela, F. A., Cuervo, A. M. (2017). Lista de chequeo de las aves de Colombia, Una síntesis del estado del conocimiento desde Hilty y Brown. (1986). Ornitología Colombiana, 16.
- Ayerbe-Quiñones, F. (2018). Guía ilustrada de la avifauna Colombiana. Wildlife Conservation Society, Bogotá.
- Aymard, G. (2022, Junio). Triplaris americana L. En Bernal, R., S. R. Gradstein y M. Celis (Eds.) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Ballesteros, J., Racero J. y Núñez, M. (2007). Diversidad de murciélagos en cuatro localidades de la zona costanera del departamento de Córdoba,
- Balvanera, P. (2012). Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas, 21(1-2).
- Barba, E. (2004). Valor del hábitat, Distribución de peces en humedales de Tabasco. ECOfronteras, 25, 9-11
- Barbier, E. B. (1997). Valoración económica de los humedales. Guia para decisores y planificadores. Irán, Oficina de la Convención de Ramsar.

- Becker, P. H. (2003). Chapter 19, Biomonitoring with birds. En, B. A. Markert, A. M. Breure y H. G. Zechmeister (Eds.). Bioindicators and biomonitors (pp. 677-736). Kidlington, Oxford.
- Bellinger, E. G. y Sigee, D.C. (2015). Freshwater algae, identification and use as bioindicators. Oxford, U. K., John Wiley y Sons Ltda.
- Beltrán, H. (2012). Evaluación de matorrales y bancos de semillas en invasiones de Ulex europeaus con diferente edad de invasión al sur de Bogotá DC-Colombia. Trabajo de Maestría en Ciencias Biológicas). Bogotá, Pontificia Universidad Javeriana.
- Bernal, R. (2022a, Junio). Achatocarpus nigricans Triana En Bernal, R., S. R. Gradstein y M. Celis (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Bernal, R., Gradstein, S. R. y Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Obtenido de, Http://catalogoplantasdecolombia.unal.edu.co.
- Berta, A., Sumich, J. L., Kovacs, K. M. (2005). Marine Mammals, Evolutionary Biology, second ed. Burlington, MA, Academic Press.
- Blake, J. G. y Mosquera, D. (2014). Camera trapping on and off trils in lowland forest of eastern Ecuador, Does location Matter? Mastozoología neotropical 21(1), 17-26.
- Blanco, D. E. (1999). Tópicos sobre humedales subtropicales y templados de Sudamérica. En A. I. Malvarez (Ed.), Los humedales como hábitat de aves acuáticas (pp. 215-223). Montevideo, Uruguay, Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y el Caribe-ORCYT.
- Bocanegra-González, K. T., Thomas, E., Guillemin, M. L., Alcázar Caicedo, C., Moscoso Higuita, L. G., González, M. A. y Carvalho, D. D. (2019). Diversidad y estructura genética de cuatro especies arbóreas clave del Bosque Seco Tropical en Colombia. Caldasia, 41(1), 78-91.
- Bocanegra-González, K. T., Thomas, E., Guillemin, M. L., de Carvalho, D., Gutiérrez, J. P., Caicedo, C. A., Moscoso-Higuita, L. G., Becerra, L. A. y González, M. A. (2018). Genetic diversity of Ceiba pentandra in Colombian seasonally dry tropical forest, Implications for conservation and management. Biological Conservation, 227, 29-37.
- Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., Hammerson, G. y Hoffmann, M. (2013). The conservation status of the world's reptiles. Biological conservation, 157, 372-385.
- Braat, L. C. y De Groot, R. (2012). The ecosystem services agenda, bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosystem Services, 1(1), 4-15.
- Bracamonte J. C. (2013). Hábitos alimenticios de un ensamble de murciélagos insectívoros aéreos de un bosque montano en las Yungas Argentinas Chiroptera Neotropical 19(1), 1157-1162.

- Bradshaw, A. D. (2002). Introduction and Philosophy. En M. R. Perrow y A. J. Davy (Eds.), Handbook of Ecological Restoration Vol. 1 Principles of Restoration (pp. 3-9). Cambridge, U. K., Cambridge University Press.
- Briceño, A. M., Rangel-Ch, J. O. y Bogino, S. M. (2016). Tree ring study of Cordia alliodora (Ruiz y Pav.) in Colombia. Colombia Forestal, 19(2), 219-232.
- Briggs, S. V., Lawler, W. G. y Thornton, S. A. (1997). Relationships between hydrological control of river red gum wetlands and waterbird breeding. Emu, 97, 31-42.
- Brigham, R. M., Grindal, S. D., Firman, M. C. y Morissette, J. L. (1997). The influence of structural clutter on activity patterns of insectivorous bats. Canadian Journal of Zoology, 75, 131-136.
- Briñez-Vásquez, G. N., Villa-Navarro, F. A., Ortega-Lara, A., Reinoso-Flórez, G. y García-Melo, J. E. (2005). Distribución altitudinal y diversidad de la familia Astroblepidae (Pisces, Siluriformes), en la cuenca del río Coello, Tolima. Dahlia. 8, 39-46.
- Briones-Salas, M., Sánchez-Vásquez, A., Aquino-Mondragón, A., Palacios-Romo, T. M., Martínez-Ayón, M. (2011). Estudios del Jaguar en Oxaca. Pp. 288.
- Brown, K. Jr. y Hutchings, R. W. (1997), Disturbance, fragmentation, and the dynamic of diversity in Amazonian forest butteries. 91-110. En Tropical forest remnants, Ecology, management, and conservation of fragmented communities (Lawrence, W. F. y Bierregaard, R. O. eds.) Chicago Press. Chicago.
- Brunet-Rossinni, A. J. y Wilkinson G. S. (2009). Methods for age estimation and the study of senescence in Bats. In Ecological and behavioral methods for the study of bats, 2nd ed. Kunz, T. H., Parsons, S., Eds. Johns Hopkins University Press, Baltimore, Pp. 901.
- Buck, L. B. (2004). Olfactory receptors and odor coding in mammals. Nutrition Reviews 62, \$184-\$188.
- Cadena-Marín, E. A. y Cortés, J. (2016). Los humedales y el bienestar humano, Indicadores de pobreza (ficha n°409). Instituto Alexander von Humboldt. Http://reporte.humboldt.org.co/biodiversidad/2015/cap4/409/.
- Cadena-Moreno, J. y Sánchez-Chavez, I. (2020). Propuesta socioambiental para el uso, manejo y conservacion del humedal Siracusa Sevilla-Valle del Cauca. [Proyecto de grado, Universidad Autónoma de Occidente]. Https://red. uao. edu. co/bitstream/handle/10614/12431/T09283.pdf?sequence=5yisAllowed=y.
- Cairns, J. (1987). Disturbed Ecosystems as Opportunities for Research in Restoration Ecology. En W. R. Jordan, M. Gilpin y J. Aber (Eds.), Restoration Ecology. A Synthetic Approach to Ecological Research (pp. 307-320). Cambridge, U. K., Cambridge University Press.
- Calonge, B., Vela-Vargas, I. M. y Pérez-Torres, J. (2010). Dieta y estructura trófica del conjunto de murciélagos frugívoros en una inca con remanentes
- Campbell, J. A. y Lamar, W. W. (2004). Los reptiles venenosos del hemisferio occidental. International Journal of Toxicolgy, 24, 187-188.
- Carpenter, S. y Cottingham, K. (1998). Resilience and Restoration of Lakes. Conservation Ecology, 1(1), 1-12.

- Carvajal-Cogollo J. E. y Urbina-Cardona, J. N. (2008). Patrones de diversidad y composición de reptiles en fragmentos de bosque seco tropical en Córdoba, Colombia. Tropical Conservation Science 1, 397-416.
- Casatti, L., Teresa F. B., Gonçalves-Souza, T., Bessa, E., Manzotti, A. R., Gonçalves, C. D. S. y Zeni, J. D. O. (2012). From forests to cattail, how does the riparian zone influence stream fish? Neotropical Ichthyology, 10(1), 205-214.
- Castaño-Mora, O. V (Ed.) (2002). Libro rojo de reptiles de Colombia. Libros rojos de especies amenazadas de Colombia. Bogotá D.C., Colombia, Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del medio Ambiente, Conservación Internacional.
- Castellanos, C. (2006). Los ecosistemas de humedales en Colombia. Universidad de Caldas. Revista Luna Azul, 1-5.
- Castro-Roa, D. (2006). Composición y estructura de la comunidad de Characiformes en la cuenca del río Prado (Tolima-Colombia). [Tesis de pregrado, Universidad del Tolima, Facultad de Ciencias, Programa De Biología]. Ibagué.
- Cerpa, J. M. P. y Flórez, G. R. (2016). Mariposas diurnas de tres fragmentos de bosque seco tropical del alto valle del Magdalena. Tolima-Colombia. Revista de la Asociación Colombiana de Ciencias Biológicas, 1 (28), áginas-57.
- Chaparro-Herrera, S., Echeverry-Galvis, M. Á., Córdoba-Córdoba, S. y Sua-Becerra, A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. Biota Colombiana, 14(2), 113-150.
- Cherem, J. J., Kammers, M., Ghizoni-Jr, I. R. y Martins, A. (2007). Mamíferos de médio e grande porte atropelados em rodovias do Estado de Santa Catarina, sul do Brasil. Biotemas 20(3), 81-96.
- Cisneros, L. M., Fagan, M. E. y Willig, M. R. (2015). Sea-son-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. Journal of Animal Ecology, 84, 373-385.
- Clare E. L., Fraser E. E., Braid H. E., Fenton B. M., Hebert P. D. N. (2009). Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis), using a molecular approach to detect arthropod prey. Molecular Ecology, 18, 2532-2542.
- Clavijo-Garzón, S., Romero-García, J. A., Enciso-Calle, M. P., Viuche-Lozano, A., Herrán-Medina, J., Vejarano-Delgado M. A. y Bernal, M. H. (2018). Lista actualizada de los anfibios del departamento del Tolima, Colombia. Biota colombiana [online]. 19 (2), 64-72.
- Cole, T. C., Hilger, H. H. y Stevens, P. (2016). Angiosperm phylogeny poster-flowering plant systematics. PeerJ Preprints 7, e2320v6.
- Collins, S. L., Perino, J. V. y Vankat, J. L. (1982). Woody vegetation and microtopography in the bog meadow association of Cedar Bog, a west central Ohio fen. American Midland Naturalist, 108(2), 245-249.
- Conama. (2008). Biodiversidad de Chile, Patrimonio y Desafíos, Ocho Libros Editores (Santiago de Chile), 640 Pp.

- Corporación Autónoma Regional de Risaralda y Wildlife Conservation Society (WCS) (2012). Caracterización de fauna (ranas y aves) y flora en seis humedales del departamento de Risaralda, Informe técnico. CARDER y WCS.
- Corporación Autónoma Regional del Tolima (CORTOLIMA) (2021). Evaluación Regional del Agua (ERA) para el Departamento del Tolima Fase 1.
- Cortés-Duque, J. y Estupiñán-Suárez, L (Eds.) (2016). Las huellas del agua, propuesta metodológica para identificar y comprender el límite de los humedales de Colombia. Bogotá D.C., Colombia, Fondo Adaptación.
- Cortés-Gómez, A. M., Castro, F. y Urbina-Cardona, J. N. (2013). Small changes in Vegetation structure create great changes in amphibian ensembles in the Colombian Pacific rainforest. Tropical Conservation Science 6, 749-769.
- Cortés-Gómez, A. M., Llano-Mejía, J. y Castro-Herrera, F. (2010). Lista de anfibios y reptiles del departamento del Tolima, Colombia. Biota Colombiana [en línea]. 11(1-2), 89-106. Https://www.redalyc.org/articulo.oa?id=49120969008
- Cortés-Gómez, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. y Ladle R. J. (2015). Ecological functions of neotropical amphibians and reptiles, a review. Univ. Sci. 20 (2), 229-245.
- Courtenay, O. y Maffei, L. (2004). Zorro cangrejero Cerdocyon thous. En, Sillero-Zubiri, C., Hoffmann, M. y Macdonald, D. W (Eds.), Canids, Foxes, Wolves, Jackals and Dogs. Encuesta de estado y plan de acción para la conservación, Pp. 32-38. Grupo de especialistas en cánidos de la UICN/SSC, UICN, Gland, Suiza y Cambridge, Reino Unido.
- Cowardin, L. M., Carter, V., Golet, F. C. y LaRoe, E. T. (1979). Classification of Wetlands and Deepwater Habitats of the United States. FWS/OBS-79/31.
- Cruz, E. X., Galindo, C. A. y Bernal, M. H. (2016). Dependencia térmica de la salamandra endémica de Colombia Bolitoglossa ramosi (Caudata, Plethodontidae). Iheringia, Sér. Zool, 106, e2016018.
- Cubiña, A. y Aide, T. M. (2001)."The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture", Biotropica, vol. 33, Pp. 260-267,
- Daly, D.C. (2022, Junio). Bursera simaruba (L.) Sarg. En Bernal, R., S. R. Gradstein y M. Celis (Eds.) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- De La Maza, R. R. (1987). Mariposas Mexicanas. México, Fondo de cultura Económica, 1997.301 p. ISBN 968-16-2316-9.
- De la Rosa, C. L. y Nocke, C. C. (2000). Una guía para los carnívoros de América Central, historia natural, ecología y conservación. Prensa de la Universidad de Texas, Austin, TX, EE. UU.
- De Vries, P. J. (1987). The butterflies of Costa Rica and their Natural History. Nueva Jersey, Princeton. 327 Pp.

- Defler, T. R. (2010). Historia Natural de los Primates Colombianos. Bogotá, Colombia, Conservación Internacional Colombia, Universidad Nacional de Colombia.
- Departamento Nacional de Planeación. (2018). Plan nacional de desarrollo 2018-2022. Bogotá D.C., Colombia.
- Di Bitetti, M. S., Di Blanco Y. E., Pereira, J. A., Paviolo, A. y Pérez, I. J. (2009). La partición del tiempo favorece la coexistencia de zorros cangrejeros (Cerdocyon thys) y zorros de las pampas (Lycalopex gymnocercus) simpátricos. Revista de Mammalogía, 90, 479-490.
- Díaz M. M., Solari S., Gregorin R., Aguirre L. F., Barquez R. M. (2021). Clave de identificación de los murciélagos Neotropicales, Chave de identificação dos Morcegos Neotropicais. Publicación Especial N° 4, PCMA, Programa de Conservación de los Murciélagos de Argentina, Tucumán, Argentina, Pp. 1-207.
- Dirzo, R. Young, H. S., Mooney, H. A. y Ceballos, G. (2011). Introduction. Pp. x-xiii, in seasonally dry tropical forests. R. Dirzo, H. S. Young, H. A. Mooney y G. Ceballos (Eds.). Cambridge University Press, Cambridge, 408 Pp.
- DoNascimiento, C., Herrera Collazos E. E. y Maldonado-Ocampo, J. A. (2018), Lista de especies de peces de agua dulce de Colombia / Checklist of the freshwater fishes of Colombia. v2.10. Asociación Colombiana de Ictiólogos. Dataset/Checklist. Http://doi.org/10.15472/numrso.
- Donegan, T. M., McMullan, W. M., Quevedo, A. y Salaman, P. (2013). Revision of the status of bird species occurring or reported in Colombia 2013. Revisión del estatus de las especies de aves que existen o han sido reportadas en Colombia 2013. Conservación Colombiana, 19, 3-10.
- Donegan, T. M., Quevedo, A., Verhelst, J. C., Cortés, O., Pacheco, J. A. y Salaman, P. (2014). Revision of the status of bird species occurring or reported in Colombia 2014. Revisión del estatus de las especies de aves que existen o han sido reportadas en Colombia. Conservación Colombiana, 21, 3-11.
- Donegan, T. M., Quevedo, A., Verhelst, J. C., Cortés-Herrera, O., Ellery, T. y Salaman, P. (2015). Revision of the status of bird species occurring or reported in Colombia 2015, with discussion of BirdLife International's new taxonomy. Revisión del estatus de las especies de aves que han sido reportadas en Colombia 2015, con una discusión de la nueva taxonomía de BirdLife Internacional. Conservación Colombiana, 23, 3-48.
- Doty, R. L. (1986). Odor-guided behavior in mammals. Experientia 42, 257-271.
- DRYFLOR, Banda-R, K., Delgado-Salinas, A., Dexter, K. G., Linares-Palomino, R., Oliveira-Filho, A., . . . y Pennington, R. T. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353(6306), 1383-1387.
- Dugan, P. (1992). Conservación de humedales. Un análisis de temas de actualidad y acción inmediata. Gland, Suiza, UICN.
- Elmberg, J., Nummi, P., Pöysä, H. y Sjöberg, K. (1994). Relationship between species number, lake size and resource diversity in assmblages of breeding waterfowl. Journal of Biogeography, 2, 75-84.

- Esquivel, H. (1997). Herbarios en los jardines botánicos. Facultad de Ciencias Básicas, Universidad del Tolima.
- Esquivel, H. E. (1997). Herbarios en los jardines botánicos. Ibagué, Colombia, Ministerio del Medio Ambiente, Red Nacional de Jardines Botánicos.
- Estrada, A. y Coates-Estrada, R. (2001). Bats in continuos forest, forest fragments and in agricultural mosaic hábitat-island at Los Tuxtlas, México. Biology of Conservation. 103, 237-245.
- Estrada-Guerrero, D. M. y Soler-Tovar, D. (2014). Las aves como bioindicadores de contaminación por metales pesados en humedales. Ornitología Colombiana, (14).
- Fagua, G. (1999). Variación de las mariposas y hormigas de un gradiente altitudinal de la cordillera Oriental (Colombia). Revista Insectos de Colombia. 2, 318-363.
- Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics, 34, 487-515.
- Faña, B. (2000). Evaluación Rápida de la Contaminación Hídrica. Ediciones GHeN. Recuperado de Http://www.ambiente-ecologico.com/067-02-2000/juannicolasfania67.htm.
- FAO y PNUMA 2020. El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. Roma.
- Farinha, J. C., Costa, L. T., Zalidis, G., Matzavelas, A., Fitoka, E., Heker, N. y Vives, P. T. (1996). Mediterranean wetland inventory, Hábitat description system. Lisboa, Portugal, MedWet. ICN, Wetlands International, Greek Biotope, EKBY.
- Fiedler, K. (1991). Systematic, evolutionary and ecological implications of myrmecophily within the Lycaenidae (Insecta, Lepidoptera, Papilionoidea). Bonn. Zool. Monogr. 31, Pp. 210.
- Fischer, J. y Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation, A synthesis. Global Ecology and Biogeography, 16, 265-280.
- Fisher, B. y Christie, M. (2010). Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation en P. Kumar (Ed.), The economics of ecosystems and biodiversity (pp. 10-40).
- Flórez-Ayala, C., Estupiñan-Suárez, L., Rojas, C., Aponte, M., Quiñones, S., Vilardy, P. y Jaramillo, U. (2015). Colombia y su naturaleza anfibia. El entramado anfibio. En U. Jaramillo, J. Cortés-Duque y C. Flórez (Eds.). Colombia Anfibia. Un país de humedales. Volumen I. Bogotá D.C., Colombia, IAvH.
- Frost, D. R. (2019). Amphibian Species of the World, an Online Reference. Version 6.0 (10 abril 2019). Electronic Database accessible at Http://research.amnh.org/herpetology/amphibia/index. html. American Museum of Natural History, New York, U.S.A.
- Fundación Futuro Latinoamericano [FFLA] (2015). Gobernanza para el manejo de los recursos naturales y las áreas protegidas. Editorial Pupila diseño integral, Https://www.ffla. net/wp-content/uploads/2021/04/Manual-de-Gobernanza-para-el-manejo-de-los-recursos-naturales-y-areas-protegidas-min.pdf.

- Galindo-González, J., Guevara, S. y Sosa V. J. (2000). Bat-and bird-generated seed rains at isolated trees in pastures in a tropical rainforest. Conservation Biology 14, 1693-1703.
- Galvis-Rizo, C., Carvajal-Cogollo, J. E., Arredondo, J. C., Passos, P., López-Victoria, M., Velasco, J. A. y Rojas-Rivera, M. A. (2015). Libro Rojo de Reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio del Medio Ambiente, Bogotá D.C.
- García-Alzate, C. A., Taphorn, D.C., Roman-Valencia, C. y Villa-Navarro, F. A. (2015). Hyphessobrycon natagaima (Characiformes, Characidae) a new species from Colombia, with a key to the Magdalena Basin Hyphessobrycon species. Caldasia, 37(1), 221-232.
- García-González, A., García Padrón, L. Y., Delgado Fernández, F. y Riverón-Giró, F. B. (2014). Anfibios y reptiles asociados a tres especies de bromelias de tanque en el Parque Nacional Guanahacabibes, Cuba. Cuadernos de Investigación UNED (ISSN, 1659-4266). 6(1), 87-97.
- García-Herrera, L., Ramírez-Francel, L. y Reinoso-Flórez, G. (2015). Mamíferos en relictos de bosque seco tropical del Tolima, Colombia. Mastozoología Neotropical, 22(1), 11-21.
- García-Herrera, L. V., Ramírez-Fráncel, L. A. y Reinoso-Flórez, G. (2019). Mamíferos del departamento del Tolima, distribución y estado de conservación. Revista U. D.C. A Actualidad y Divulgación Científica 22(2), e1100.
- García-Herrera, L. V., Ramírez-Fráncel, L. A., Losada-Prado, S., Reinoso-Flórez, G., Villa-Navarro, F. A., Guevara, G. (2020). Functional traits of bats associated with the use of wetlands in Colombian tropical dry forests. Acta Chiropterologica 22(2), 283-294.
- García-Herrera, L. V., Ramírez-Fráncel, L. A., Reinoso, Flórez, G. (2015). Mamíferos en relictos de Bosque Seco Tropical del Tolima, Colombia. Mastozoología Neotropical 22(1), 11-21.
- García-Herrera, L. V., Ramírez-Fráncel, L. A., Reinoso-Flórez, G. (2019). Consumo de plantas pioneras por murciélagos frugívoros en un fragmento de bosque seco tropical (Colombia). Ciencia en Desarrollo 10, 33-41.
- García-Melo, L. (2005). Distribución, Diversidad y Ecología Básica de la familia Trichomycteridae (Ostariophysy, Siluriformes) en la cuenca del río Coello departamento del Tolima. [Tesis de pregrado, Universidad del Tolima, Facultad de Ciencias, Programa De Biología]. Ibagué.
- García-Melo, L. J. y Lozano Y. Y. (2008). Peces. En, Reinoso-Flórez, G., Villa-Navarro, F. A., García-Melo, J. E. y Vejarano-Delgado M. A. y Esquivel, H. E. (2008). Biodiversidad Faunística y Florística de la Subcuenca del río Anamichú. Biodiversidad Regional Fase IV. Grupo de Investigación en Zoología, Universidad del Tolima, Ibagué, Colombia.
- Gardner, A (Ed.). 2008. Mammals of South America. Volume 1. Marsupials, xenarthrans, shrews, and bats. University of Chicago Press, Chicago, 669 Pp.
- Gentry, A. H. y Vasquez, R. (1993). A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Perú), with supplementary notes on herbaceous taxa. The Chicago University Press.

- Gerhardt, H. C. (1994). The evolution of vocalization in frogs and toads. Annual Review in Ecology and Systematics 25, 293-324.
- Gillespie, T. W. y Walter, H. (2001). Distribution of bird species richness at a regional scale in tropical dry forest of Central America. Journal of Biogeography, 28, 651-662.
- Gómez, J. A. y Cadena, M. C. (2017). Validación de las Fórmulas de Evapotranspiración de Referencia (Eto) para Colombia.
- Gómez, J. J., Túnez, J. I., Fracassi, N. y Cassini, M. H. (2014). Idoneidad del hábitat y correlatos antropogénicos de la distribución de la nutria de río neotropical (Lontra longicaudis). Revista de mamalogía 95, 824-833.
- Gómez-González, J. (2014). El kayuuishi (Crocodylus acutus) en la bahía de Portete, aportes al conocimiento del estado de conservacion. Pp. 300-315. En, Báez, L. y F. Trujillo (Eds.). 2014. Biodiversidad en Cerrejón. Carbones de Cerrejón, Fundación Omacha, Fondo para la Acción Ambiental y la Niñez. Bogotá, Colombia. 352 p.
- González-M., García, R. H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodríguez, N., Pérez, K., Mijares, F., Castaño-Naranjo, A., Jurad R. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environment Research Letters, 13, 1-12.
- Gorka, B. (2010). Estudio de la comunidad de anfibios y reptiles en la cuenca de bolintxu, propuesta para el conocimiento de la diversidad de herpetofauna, detección de especies de interés y propuestas de gestión. Obtenido de Http://www.bilbao.eus/Agenda21/documentos/estudio_comunidad_anfibios_reptile s.pdf.
- Govaerts, R. (2003). How many species of seed plants are there?-a response. Taxon, 52(3), 583-584.
- Gradstein, S. R. (2022a, Junio). Bignonia diversifolia Kunth En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co.
- Gradstein, S. R. (2022b, Junio). Handroanthus chrysanthus (Jacq.) S. O. Grose En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Green, A. J. y Figuerola, J. (2003). Aves acuáticas como bioindicadores en los humedales. En M. Paracuellos (Ed.), Ecología, manejo y conservación de los humedales (pp. 47-60). Almería, España, Instituto de Estudios Almerienses.
- Grobicki, A., Chalmers, C., Jennings, E., Jones, T., Peck, D (Eds.) (2016). An introduction to the RAMSAR Convention on Wetlands, 7th edition. Ramsar Convention Secretariat, Gland, Switzerland, 110 Pp.
- Grupo de Investigación en Zoología (GIZ) (2010). Plan de Manejo Ambiental Humedal La Moya de Enrique, Informe técnico. CORTOLIMA y GIZ.
- Grupo de Investigación en Zoología (GIZ) (2010). Planes de Manejo Ambiental Humedales del Tolima Fase I, Informe técnico. CORTOLIMA y GIZ, Ibagué.

- Grupo de Investigación en Zoología (GIZ) (2013-2015). Planes de Manejo Ambiental Humedales del Tolima Fase II, Informe técnico. CORTOLIMA y GIZ, Ibagué.
- Grupo de Investigación en Zoología (GIZ) (2016). Planes de Manejo Ambiental Humedales del Tolima Fase III, Informe técnico. CORTOLIMA y GIZ, Ibagué.
- Grupo de Investigación en Zoología (GIZ) (2017). Planes de Manejo Ambiental Humedales del Tolima Fase IV, Informe técnico. CORTOLIMA y GIZ, Ibagué.
- Grupo de Investigación en Zoología (GIZ) (2019). Planes de Manejo Ambiental Humedales del Tolima Fase V, Informe técnico. CORTOLIMA y GIZ, Ibagué.
- Grupo de Investigación en Zoología (GIZ) (2021). Planes de Manejo Ambiental Humedales del Tolima Fase VI, Informe técnico. CORTOLIMA y GIZ, Ibagué.
- Gutiérrez, A. (2014). Gobernanza ambiental en los municipios de Risaralda. Hacia un modelo de valoración de la gobernanza ambiental local. [Tesis de Maestría, Universidad Tecnológica de Pereira]. Https://repositorio.utp.edu.co/server/api/core/bitstreams/3905a485-edfb-4559-b77e-963119e3945c/content.
- Guzmán-Ruíz, A., Hes, E. y Schwartz K. (2011). Shifting governance modes in wetland management a case study of two wetlands in Bogotá, Colombia. Environment and Planning C, Government and Policy, 990-1003.
- Hanson, P., Springer, M. y Ramírez, A. (2010). Introducción a los grupos de macroinvertebrados acuáticos. Revista de Biología Tropical, 58(4), 3-37.
- Heyer, W. R., Donnelly, M.A., Mcdiarmid, R. W., Hayek, L. C. y Foster, M. S. (1994). Measuring and Monitoring Biological Diversity, Standard Methods for Amphibians. Washington, D.C., U.S.A., Smithsonian Institution Press.
- Heywood, V. H. (1985). Plantas con flores, Barcelona, editorial Reverte S. A, Pp. 181-188.
- Hilty, S. L. y Brown, W. L. (2001). Guía de las aves de Colombia, Edición en español. Cali, Colombia, American bird conservation (ABC).
- Hope, P. R., Bohmann, K., Gilbert, M. T. P., Zepeda-Mendoza, M., Razgour, O., Jones, G. (2014). Second-generation sequencing and morphological fecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Frontiers in Zoology 11, 2-15.
- House, M. (1990). Water quality indices as indicators of ecosystem change. Environ. Monit. Assess. 15, 255-263.
- IAVH. (1997). Caracterización ecológica de cuatro remanentes de Bosque seco Tropical de la región Caribe colombiana Villa de Leyva, Grupo de Exploraciones Ecológicas Rápidas, IAVH.
- Instituto Geográfico Agustín Codazzi (IGAC) (1997). Estudio General de Suelos y Zonificación de Tierras del Departamento del Tolima.
- Isler, M. L. e Isler P. R. (1987). The Tanagers, natural history, distribution and identification. Smithsonian Institution Press, Washington, D.C.

- IUCN. (2022). The IUCN Red List of Threatened Species. Recuperado de Http://www.iucnredlist.org.
- Jara-Muñoz, A. (2022b, Junio). Erythroxylum hondense Kunth En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Ji, Q., Luo, Z. X., Zhang, X. yuan, C. X., Xu, L. (2009). Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326, 278-281.
- Jørgensen, P. M., Ulloa-Ulloa, C., León, B., León-Yánez, S., Beck, S. G., Nee, M. y Gradstein, R. (2011). Regional patterns of vascular plant diversity and endemism. Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 192-203.
- Kalko, E. K. y Handley C. O. (2001). Neotropical bats in the Canopy, diversity, community structure, and implications for conservation. Plant Ecology, vol. 153, Pp. 319-333.
- Keller, R. (2013). Identification of tropical woody plants in the absence of flowers and fruits, A field guide. Birkhäuser.
- Kelly, L. M. (2022, Junio). Talinum fruticosum (L.) Juss. En Bernal, R., S. R. Gradstein y M. Celis (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Kremen, C. (1993). Assessing the indicator properties of species assemblages for natural areas monitoring. Ecological applications 2 (2), 203-217.
- Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T. y Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1-38.
- Kusler, J. A., Mitsch, W. J. y Larson, J. S. (1994). Humedales. Investigación y Ciencia, 210, 6-13.
- Lamas, G., Callaghan, C. J., Casagrande, M. Mielke, T. H, Pyrez, W, Robbins, R. K. y Viloria, A. L. (2004). Atalas of Neotropical Lepiddoptera-Checklist, part 4 Hesperoidea-Papilionoidea. Scientific Publications, Florida, Gainesville, Estados Unidos. 439 Pp.
- Lasso, C. A., Gutiérrez, F. de P. y Morales-B., D (Eds.) (2014). X. Humedales interiores de Colombia, identificación, caracterización y establecimiento de límites según criterios biológicos y ecológicos. Bogotá, D.C., Colombia, Serie editorial Recursos Hidrobiológicos y pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
- Lecrom, J. F., Constantino, L. M. y Salazar, J. A. (2002). Mariposas de Colombia. Tomo 1. Familia Papilionidae. Bogotá, Carlec Ltda., Edición española.
- Lewis, W. M. (1978) Comparison of temporal and spatial variation in the zooplankton of a lake by means of variance components. Ecology, 59, 666-671.
- Lewis, W. M. y W. Riehl. (1982). Phytoplankton composition and morphology in Lake Valencia, Venezuela. International Review of Hydrobiology 67, 297-322.

- Lim, B. K., Loureiro, L. O., Upham, N. S., Brocca, J. L. (2017). Phylogeography of Dominican Republic bats and implications for systematic relationships in the Neotropics. J. Mammal. 98, 986-993.
- Lindenmayer, D. B. (1999). Future directions for biodiversity conservation in managed forests, indicator species, impact studies and monitoring programs. Forest Ecology and Management, 115(2-3), 277-287.
- Lindig-Cisneros, R. y Zedler, J. B. (2005). La restauración de humedales. En O. Sánchez, E. Peters, R. Márquez-Huitzil, E. Vega, Portales, Valdez y Danae Azuara (Eds.), Temas sobre restauración ecológica (pp. 256). México D. F., México, Instituto Nacional de Ecología (INE-SEMARNAT).
- Link, A., De Luna, A. G. y Burbano, J. (2013). Estado de conservación de uno de los primates más amenazados con la extinción, el mono araña café (Ateles hybridus). En, Defler, TR, PR Stevenson, ML Bueno y D. Guzmán (Ed.), Primates Colombianos en peligro de extinción., Pp. 87-117. Asociación Primatológica colombiana., Bogotá.
- Link, A., Mittermeier, R. A. y Urbani, B. (2019). Actus griseimembra. The IUCN Red List of Threatened Species 2019, e. T1807A17922228.
- López-Delgado, E. (2013). Composición y estructura de la comunidad de peces y sus relaciones con la calidad de la vegetación riparia y algunas variables ambientales en dos ríos de bosque seco tropical (Bs-T), Tolima (Colombia). [Tesis de Maestría. Programa de Biología, Facultad de Ciencias Básicas, Universidad del Tolima]. Ibagué.
- López-Forment, W., Schmidt, W. y Greenhall, A. M. (1971). Movement and populational studies of the vampire bat (Desmodus rotundus) in Mexico. Journal of Mammalogy, 52, 227-228.
- Lopretto, E. y Tell, G. (1995). Ecosistemas de aguas continentales. Argentina, Ediciones Sur. 1401 p.
- Losada-Prado, S. y Molina-Martínez y. (2011). Avifauna del Bosque Seco Tropical en el departamento del Tolima (Colombia), análisis de la comunidad. Caldasia, 33(1), 271-294.
- Lynch, J. D. (1999). Una aproximación a las culebras ciegas de Colombia (Amphibia, Gymnophiona). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, 317-337.
- Lynch, J. D. (2012). El contexto de las serpientes de Colombia con un análisis de las amenazas en contra de su conservación. Revista de la Academia Colombiana de Ciencias Exactas. Volumen XXXVI, Número 140.
- Maas, B., Karp, D. S., Bumrungsri, S., Darras, K., Gonthier, D., Huang, J. C. C., Lindell, C. A., Maine, J. J., Mestre, L., Michel, N. L., Morrison, E. B., Perfecto, I., Philpott, S. M., Şekercioğlu, Ç. H., Silva, R. M., Taylor, P. J., Tscharntke, T., Van Bael, S. A., Whelan C. J. Williams Guillén, K. (2015). Bird and bat predation services in tropical forests and agroforestry landscapes. Biological Reviews 91, 1081-101.
- Maass, J. M., Balvanera, P., Castillo, A., Daily, G. C., Mooney, H. A., Ehrlich, P., Quesada, M., Miranda, A., Jaramillo, V. J., García-Oliva, F., Martínez-Yrizar, A., Cotler, H., López-Blanco, J., Pérez-Jiménez, A., Búrquez, A., Tinoco, C., Ceballos, G., Barraza, L., Ayala,

- R. y Sarukhán, J. (2005). Ecosystem services of tropical dry forests, insights from long-term ecological and social research on the Pacific Coast of Mexico. Ecology and society, 10(1).
- Macdonald, D. W. (2009). The Encyclopedia of Mammals. Oxford, Oxford University Press.
- Machado, T. A. (1989). Distribución ecológica e identificación de los coleópteros acuáticos en diferentes pisos altitudinales del departamento de Antioquia. Medellín (Proyecto de investigación). Universidad de Antioquia. Facultad de ciencias exactas y naturales.
- Magallon, S., Crane, P. R. y Herendeen, P. S. (1999). Phylogenetic pattern, diversity, and diversification of eudicots. Annals of the Missouri Botanical Garden, 86(2), 297-372.
- Mahecha-J., O. y Diaz-S., V. (2015). Aproximación a la diversidad taxonómica de las mariposas diurnas (Lepidoptera, Papilionoidea) en la Vereda Cafrería, Municipio Icononzo, Tolima. -Revista Científica Unincca, 20(2), 83-91.
- Maldonado-Ocampo, J. A., Ortega-Lara, A., Usma, J. S., Galvis, G., Villa-Navarro, F., Vásquez, L., Prada-Pedreros, S., et al.,. (2005). Peces de los Andes de Colombia 1a Edición. Bogotá D.C., Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
- Mamaskato, F. (2008). Plan de ordenamiento y manejo de la subcuenca hidrográfica de los ríos Sambingo-Hato Viejo, municipios de Bolívar. Mercaderes y Florencia, Departamento del Cauca. Recuperado de Http://crc.gov.co/files/ConocimientoAmbiental/POMCH/Rio%20Sambingo-Hatoviejo/Prospectiva.pdf.
- Manchado, M. y Peña, G. (2000). Estructura numérica de la comunidad de aves del orden Passeriformes en dos bosques con diferentes grados de intervención antrópica en los corregimientos de Salero y San Francisco de Icho (Tesis de pregrado). Facultad de Ciencias Básicas, Universidad Tecnológica del Chocó, Chocó.
- Marín, D., Ramírez-Chaves, H. y Suárez-Castro, A. (2012). Revisión cráneo-dentaria de Procyon (Carnivora, Procyonidae) en Colombia y Ecuador, con notas sobre su taxonomía y distribución. Mastozoología Neotropical 19(2), 259-270.
- Marsh, D. M. y Pearman, P. B. (1997). Effects of habitat fragmentation on the abundance of two species of Leptodactylidae frogs in an Andean montane forest. Conservation Biology 11, 1323-1328.
- McCafferty, W. P. (1981). Aquatic entomology, the fisherman's and ecologist's illustrated guide to insects and their relatives. Boston, U.S.A., Science Book International.
- McCracken, G. F., Westbrook, J. K., Brown, V. A., Eldridge, M., Federico, P., Kunz, T. H. (2012). Bats Track and Exploit Changes in Insect Pest Populations. PLOS ONE 7, e43839.
- McInnes, R. J. (2013). Recognizing ecosystem services from wetlands of international importance, an example from Sussex, UK. Wetlands, 33(6), 1001-1017.
- McMullan, M., Quevedo, A. y Donegan, T. M. (2010). Guía de campo de las aves de Colombia. Bogotá, Colombia, Fundación ProAves.

- Medellín, R. (2000). Bat Diversity and Abundance as Indicators of Disturbance in Neotropical Rainforests. Conservation Biology, 14(6), 1666-1675.
- Melathopoulos, A. P., Cutler, G. C., Tyedmers, P. (2015). Where is the value in valuing pollination ecosystem services to agriculture? Ecological Economics 109, 59-70.
- Méndez-Narváez, J. (2014). Diversidad de anfibios y reptiles en hábitats altoandinos y paramunos de la cuenca del río Fúquene, Cundinamarca, Colombia. Obtenido de Http://www.redalyc.org/pdf/491/49140738006.pdf.
- Mendoza-C., H. (1999). Estructura y riqueza florística del bosque seco tropical en la región Caribe y el valle del río Magdalena, Colombia. Caldasia, 21 (1), 70-94.
- Merrit, R. W. y Cummins, K. W (Eds.) (2008). An Introduction to the Aquatic Insects of North America. U.S.A., Kendall/Hunt Publishing Company.
- Metcalf y Heddy Inc. (1991). Wastewater Engineering. Collection and pumping of wastewater. Nueva York, U.S.A., G. Tchobanoblous Ed MacGraw-Hill, Inc.
- Michel-Vargas, A. M., Sejas-Lazarte, W. A., Linera-Canedo, C. D. R., et al. (2019). Evaluación del uso de indicadores de biodiversidad en los estudios de evaluación de impacto ambiental (EEIA) de los sectores más importantes de Bolivia. Acta Nova 9(2), 204-235.
- Middleton, B. (1999). Wetland Restoration, Flood Pulsing and Disturbance Dynamics. Nueva York, U.S.A., John Wiley and Sons.
- Milesi, F. A., Marone, L., Lopez de Casenave, L., Cueto, V. R. y Mezquida, E. T. (2002). Gremios de manejo como indicadores de las condiciones del ambiente, un estudio de caso con aves y perturbaciones del hábitat en el Monte Central, Argentina. Ecología Austral, 12(2), 149-161.
- Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being, Synthesis. Island Press, Washington, D.C.
- Miller, J. S. (2022, Junio). Cordia alliodora (Ruiz y Pav.) Oken En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Ministerio de Agricultura. (1978) Decreto 154, "Por el cual se reglamenta la Parte III del Libro II del Decreto-Ley 2811 de 1974, De las aguas no marítimas y parcialmente la Ley 23 de 1973". Bogotá.
- Ministerio de Agricultura (s. f.). Agronet. Recuperado el 28 de Mayo de 2018, de Http://www.agronet.gov.co/Paginas/default.aspx
- Ministerio del Medio Ambiente y Desarrollo Sostenible. (2015). Decreto 1076 "Por medio del cual se expide el Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible". Bogotá, 654 pág.
- Ministerio del Medio Ambiente, Vivienda y Desarrollo Territorial [MAVDT] (2004). Resolución 865 del 2004. Bogotá, Colombia, MAVDT.

- Ministerio del Medio Ambiente, Vivienda y Desarrollo Territorial [MAVDT] (2006). Resolución 196 de 01 de Febrero de 2006."Por la cual se adopta la guía técnica para la formulación de planes de manejo para humedales en Colombia". Bogotá, 31 pág.
- Ministerio del Medio Ambiente [MMA] (2002). Política Nacional para Humedales Interiores de Colombia, Estrategia para su Conservación y Uso Sostenible. En W. Mitsch y G. Gosselink. Wetlands (pp. 582). N. Y., U.S.A., John Willey y Sons Inc.
- Ministerio del Medio Ambiente-Instituto de Investigaciones de Recursos Biológicos Alexander Von Humboldt [MMA] (1999). Humedales Interiores de Colombia, Bases Técnicas para su Conservación y Uso Sostenible.
- Mitchell, J. (2022, Junio). Astronium graveolens Jacq. En Bernal, R., S. R. Gradstein y M. Celis (Eds.) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Mitsch, W. J. y Gossilink, J. G. (2000). The value of wetlands, Importance of scale and landscape setting. Ecological Economics, 35(1), 25-33.
- Mitsch, W. J. y Gosselink J. G (Eds.) (2015). Wetlands, 5th edition. J. Wiley y H. Sons, New Jersey, 456 Pp.
- Mojica, J. I. (1999). Lista preliminar de las especies dulceacuícolas de Colombia. Rev. Acad. Colomb. Cienc., 23 (Suplemento especial), 547-566.
- Molina-Martínez Y. G. (2002). Composición y estructura trófica de la comunidad aviaria de la Reserva Natural los Yalcones (San Agustín-Huila) y su posible relación con la vegetación arbórea y arbustiva (Tesis de pregrado). Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia.
- Montilla, S. O., Mopán-Chilito, A. M., Sierra Murcia, L. N., Mahecha Triana, J. D., Caro Ruiz, O. M., Montoya-Cepeda, J., Gutiérrez-Barreto, D. A., Holguín-Vivas, J. A., Agámez, C. J., Pérez-Grisales, L. J., Cruz-Moncada, M., Corredor-Durango, N. J., Chaves Díaz, E. A., Cardona-Cardona, A. H., Franco-Pérez, E., Rivera-Ospina, A. M. y Link, A. (2021). Activity Patterns, Diet and Home Range of Night Monkeys (Aotus griseimembra and Aotus Iemurinus) in Tropical Lowland and Mountain Forests of Central Colombia. Revista Internacional de Primatología, International Journal of Primatology, 42,
- Morales-Betancourt, M. A., Lasso, C. A., De La Ossa, J. y Fajardo-Patiño, A (Ed.) (2013). VIII. Biología y conservación de los Crocodylia de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAVH). Bogotá, Colombia. 336 Pp.
- Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P. y Bock, B. C. (2015). Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt (IAvH), Universidad de Antioquia. Bogotá, D.C., Colombia. 258 Pp.
- Morales-Jiménez, A. L. y de la Torre, S. (2008). Aotus lemurinus. The IUCN Red List of Threatened Species 2008, eT1808A7651803.
- Moyle, P y Cech, J. (1988). Fishes, An introduction to ichthyology. 2 ed. New Jersey, Prentice Hall. 559 Pp.

- Muñoz-Quesada, F. (2004). El Orden Trichoptera (Insecta) en Colombia, II, inmaduros y adultos, consideraciones generales. Pp. 319-349. En, Fernández, F., M. Andrade-C. y G. Amat, (Eds.). Insectos de Colombia. Vol III. Bogotá, Universidad Nacional de Colombia-Instituto Humboldt (Colombia).
- Murphy, P. G. y Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 67-88.
- Murphy, P. G. y Lugo, A. E. (1995). Dry forests of Central America and the Caribbean. En, Bullock SH., Mooney HA y Medina E. (Eds.). Seasonally Dry Tropical Forests, vol. 85. Cambridge, Cambridge University Press. p. 9-34.
- Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. y Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.
- Naranjo, L. G. (1997). Humedales de Colombia. Ecosistemas amenazados. En C. López-Perilla (Ed.), Sabanas, vegas y palmares. El uso del agua en la Orinoquia colombiana. Bogotá D.C., Colombia, Universidad Javeriana-CIPAV.
- Naranjo, L. G. y Espinel, J. D. A (Eds.) (2009). Plan nacional de las especies migratorias, diagnóstico e identificación de acciones para la conservación y el manejo sostenible de las especies migratorias de la biodiversidad en Colombia. Bogotá D.C., Colombia, Ministerio del Medio Ambiente [MMA]-WWF Colombia.
- Naranjo, L. G., Amaya, J. D., Eusse-González, D. y Cifuentes-Sarmiento y (Eds.) (2012). Guía de las Especies Migratorias de la Biodiversidad en Colombia. Aves. Vol. 1. Bogotá, D.C., Colombia, Ministerio de Ambiente y Desarrollo Sostenible-WWF Colombia.
- Naranjo, M. E., Rengifo, C., Soriano, P. J. (2003). Efecto de la ingestión por murciélagos y aves sobre la germinación de semillas de Stenocereus griseus y Subpilocereus repandus (Cactaceae). Revista de Ecología Tropical 19, 19-25.
- Navarrete, D. y Ortega, J. (2011). Tamandua mexicana (Pilosa, Myrmecophagidae). Mammalian species 43(874), 56-63.
- Needham, J. G. y Needham, P. R. (1991). Guía para el estudio de los seres vivos de las aguas dulces. Barcelona, España, Reverté.
- Nelson, J. (2006). Fishes of the World. New Jersey, John Wiley y Sons, Inc. Fourth. 539 Pp.
- Noback, C. R. (1951). Morphology and phylogeny of hair. Annals of the New York Academy of Sciences 53, 476-492.
- North American Banding Council (NABC) (2003). Manual para anillar Passeriformes y cuasi-Passeriformes del anillador de Norteamérica (excluyendo colibríes y búhos). The North American Banding Council, point Reyes station, California.
- Obando, S. (2022, Junio). Melicoccus bijugatus Jacq. En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Ocampo-Peñuela, N. (2010). El fenómeno de la migración en aves, una mirada desde la Orinoquia. Orinoquia, 14(2), 188-200.

- Oftedal, O. T. (2002). The mammary gland and its origin during synapsid evolution. Journal of Mammary Gland Biology and Neoplasia 7, 225-252.
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2022). Servicios ecosistémicos y biodiversidad. Editorial FAO, Https://www.fao.org/ecosystemservices-biodiversity/es/
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2006). Evapotranspiración del Cultivo, Guías para la Determinación de los Requerimientos de Agua de los Cultivos. R. G. Allen, L. S. Pereira, D. Raes y M. Smith (Eds.).organización de las Naciones Unidas para la Agricultura y la Alimentación, FAO.
- Osorio-Huamaní, B. C. (2014). Inventario de la biodiversidad de aves como indicador de la calidad ambiental del "Humedal Laguna el Oconal" del Distrito de Villa Rica. Universidad Nacional Agraria de la Selva. Tingo María.
- Ospina-López, L. y Reinoso-Flórez, G. (2009). Mariposas diurnas (Lepidoptera, Papilionoidea y Hesperioidea) del jardín botánico Alejandro von Humboldt de la Universidad del Tolima (Ibagué Colombia). Tumbaga, 1(4), 135-148.
- Pacheco-Vargas, G. F., Sánchez-Guzmán, J. N. y Losada-Prado, S. (2018). Caracterización de la comunidad de aves asociada a los humedales de zonas bajas del departamento del Tolima, Colombia. Biota, 19(1), 190-201.
- Packard, G. C., Tracy, C. R. y Roth, J. J. (1977). The physiological ecology of reptilian eggs and embryos and the evolution of viviparity within the Class Reptilia. Biological Reviews, 52(1), 71-105.
- Palmer, M. (1962). Algae in water supplies. U. S. Dept. of Health, Education and Welfare. Supt. Documents, Washington, D.C. 88 p.
- Paredes, C., Iannacone, J. y Alvariño, L. (2007). Biodiversidad de invertebrados de los humedales de Puerto Viejo, Lima, Perú. Neotropical Helminthology, 1(1), 21-30.
- Parra, J. L. (2014) Uso de la biota acuática en la identificación, caracterización y establecimiento de límites en humedales interiores, Aves. En C. A. Lasso, F. Gutiérrez y B. D. Morales (Eds.), X. Humedales interiores de Colombia, identificación, caracterización y establecimiento de límites según criterios biológicos y ecológicos (pp. 150-155). Bogotá, D.C., Colombia, Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
- Patiño-Guío, M. F. (2014). Análisis comparativo del componente fauna entre los términos de referencia para la elaboración de estudios de impacto ambiental en proyectos de explotación de hidrocarburos en Colombia y Perú. Tesis, Especialista en planeación ambiental y manejo integral de los recursos naturales, Universidad Militar Nueva Granada. Bogotá, Colombia. 22 Pp.
- Patterson, B. D. y Costa, P. L. (2012). Bones, Clones, and Biomes. The History and Geography of Recent Neotropical Mammals. Published by University of Chicago Press.
- Patterson, B. D. (2016). Mammals everywhere. Pp. 424-429 in Encyclopedia of Evolutionary Biology, Vol. 2 (R. M. Kliman, Ed.). Academic Press, Oxford. Https://doi.org/10.1016/B978-0-12-800049-6.00284-5.

- Pavlis, N. K., Holmes, S. A., Kenyon, S. C. y Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, Solid Earth. 117(B4), 1-38.
- Perdomo, G. y Gómez, M. (2000). Estatuto de aguas para el área de jurisdicción de la corporación autónoma regional del Tolima. Ibagué, Colombia, CORTOLIMA.
- Pizano, C. y García, H. (2014). El Bosque Seco Tropical en Colombia. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
- Pizano, C., González-M, R., González, M. F., Castro-Lima, F., López, R., Rodríguez, N., Idárraga-Piedrahíta, A., Vargas, W., Vergara-Varela, H., Castaño-Naranjo, A., Devia, W., Rojas, A., Cuadros, H. y Toro, J. L. (2014). Las Plantas de los Bosques Secos de Colombia. En C. Pizano y H. García (Eds.), El bosque seco tropical en Colombia (pp. 50-94). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
- Pointier, J. P., Yong, M. y Gutiérrez, A. (2005). Guide to the Freshwater molluscs of Cuba. ConchBooks. ISBN 3-925919-75-9.119 p.
- Ponce de León, J. y Rodríguez, R. (2010). Peces cubanos de la familia Poeciliidae, Guía de Campo. Editorial La Academia. La Habana-Cuba. p 3
- Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H. y Wells, K. D. (2004). Herpetology. Third edition. Pearson Prentice Hall, United States of America.
- Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A. y Fogden, M. P. L. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161-167.
- Prat, N., Ríos, B., Acosta, R. y Rieradevall, M. (2009). Los macroinvertebrados como indicadores de la calidad de las aguas. En E. Domínguez y H. R. Fernández (Ed.), Macroinvertebrados bentónicos sudamericanos, sistemática y biología (pp. 631-51). Tucumán, Argentina, Fundación Miguel Lillo.
- Prescott, E. G. (1973). Contributions towards a Monograph of the genus Euglena. Guttingen, 168p.
- Prieto-Torres, D., Rojas-Soto, A., Santiago-Alarcón, O. R., Bonaccorso, D. E., Navarro-Sigüenza, A. G. (2019). Diversity, endemism, species turnover and relationships among avifauna of neotropical seasonally dry forests. Ardeola, 66, 257–277.
- Pyrcz, W., Prieto, C., Viloria, L. y Andrade-C, M. G. (2013). New species of high elevation cloud forest butterflies of the genus Pedal odes Butler from the northern Colombian Andes (Lepidoptera, Nymphalidae, Satyrinae). Zootaxa. 3716, 528-538
- Quesnelle, P. E., Fahrig, L. y Lindsay, K. E. (2013). Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biological Conservation, 160, 200-208.
- Quiroga, R. (2007). Indicadores ambientales y de desarrollo sostenible, avances y perspectivas para América Latina y el Caribe. Series manuales. Naciones Unidas, CEPAL, Santiago de Chile.

- Racey, P. A. (2009). Reproductive Assessment of Bats. In Kunz T. H. Parsons S (Eds.), Ecological and Behavioral Methods for the Study of Bats, 2nd Johns Hopkins University Press, Baltimore, MD, U.S.A., p. 901.
- Ralph, C. J., Geupel, G. R., Pyle, P., Martin, T. E. y Desante, D. F. (1993). Handbook of field methods for monitoring landbirds. Albany, California, U.S.A., Pacific Southwest Research Station, Forest Service, U. S. Department of Agriculture.
- Ralph, C. J., Geupel, G. R., Pyle, P., Martin, T. E., De Sante, D. F. y Milá, B. (1996). Manual de métodos de campo para el monitoreo de aves terrestres. General technical report. Albany, California, U.S.A., Pacific Southwest Research Station, Forest service, U. S. Department of agriculture.
- Ralph, C. J., Widdowson, M., Widdowson, B., O'donnell, B. y Frey, R. I. (2008). Tortuguero bird monitoring station protocol for the Tortuguero integrated bird monitoring program. Arcata, California, U.S.A., U. S. Forest Service, Redwood Sciences Laboratory.
- Ramírez, A. y Viña, G. (1998). Limnología Colombiana, aportes a su conocimiento y estadística de análisis. Bogotá. Fundación universidad de Bogotá Jorge Tadeo Lozano. ISBN 958-9029-06-X.
- Ramírez, A. (2000). Utilidad de las aves como indicadores de la riqueza específica regional de otros taxones. Ardeola, 47(2), 221-226.
- Ramírez-Chaves, H. E., Suárez-Castro, A. F., Morales-Martínez, D. M., et al. (2021). Mamíferos de Colombia. v1.12. Sociedad Colombiana de Mastozoología. Conjunto de datos/lista de verificación. Https://dx.doi.org/10.15472/kl1whs
- Ramírez-Fráncel, L., García-Herrera, L., Reinoso-Flórez, G. (2015). Nuevo registro del murciélago pálido Phylloderma stenops (Phyllostomidae), en el valle alto del río Magdalena, Colombia. Mastozoología Neotropical. 22(1), 97-102.
- Ramírez-Fráncel, L. A., García-Herrera, L. V. y Reinoso-Flórez, G. (2018). First record of Platyrrhinus albericoi Velazco, 2005 (Chiroptera, Phyllostomidae) in the eastern slope of the Central Andes of Colombia. Check List 14(6), 1161-1167.
- Ramírez-Fráncel, L. A., García-Herrera, L. V., Reinoso-Flórez, G. (2020). Using MaxEnt modeling to predict the potential distribution of Platyrrhinus ismaeli (Phyllostomidae). Therya, 11(2), 203-212.
- Ramírez-Fráncel, L. A. García-Herrera, L. V. Losada-Prado, S. Reinoso-Flórez, G. Lim, B. K. Sánchez, F. Sánchez-Hernández, A. Guevara, G. (2021). Skull Morphology, Bite Force, and Diet in Insectivorous Bats from Tropical Dry Forests in Colombia. Biology, 2021, 10, 1012.
- Ramírez-Fráncel, L. A. García-Herrera, L. V. Losada-Prado, S. Reinoso-Flórez, G. Sánchez-Hernández, A. Estrada-Villegas, S. Lim, B. K. y Guevara, G. (2022). Bats and their vital ecosystem services, a global review. Integrative Zoology, 2021, 0, 1-22.
- Ramos-Pereira, M. J., Marques, J. T., Santana, J., Santos, C. D., Valsecchi, J., De Queiroz, H. L., Beja, P., Palmeirim J. M. (2009). Structuring of Amazonian bat assemblages, the roles of flooding patterns and floodwater nutrient load. Journal of Animal Ecology, 78, 1163-1171.

- Ramsar. (1971). Convención sobre los Humedales. Resolución VIII. 16.8va. Reunión de la Conferencia de las Partes Contratantes, -Agua Vida y Cultura. Valencia, España.
- Ramsar. (2000). Manuales Ramsar para el uso racional de los humedales. Marco estratégico y lineamientos para el desarrollo futuro de la lista de humedales de importancia internacional.
- Ramsar. (2002). Compendio del inventarío de humedales. CRQ.
- Ramsar. (2015). Importancia de los humedales. Recuperado de Http://www.RAMSAR.org/es/acerca-de/la-importancia-de-los-humedales.
- Rangel-Ch, J. O. (2015). La biodiversidad de Colombia, significado y distribución regional. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(151), 176-200.
- Rangel-Ch, O. (2005). Recuperación de la Vegetación Relictual de Áreas Prioritarias de la Zona de Vida de Bosque de Vida Bs-T, en el Departamento de Córdoba. Corporación Autónoma Regional de los Valles del Sinú y San Jorge (CVS), Universidad Nacional de Colombia.
- Reinoso, G., Villa-Navarro, F., Losada, S., Gracia-Melo, J. y Vejarano, M. (2010). Biodiversidad Faunística de los Humedales del Departamento del Tolima. Universidad del Tolima.
- Remsen, J. V., Areta, J. I., Cadena, C. D., Jaramillo, A., Nores, M., Pacheco, J. F., Pérez-Emán, J., Robbins, M. B., Stiles, F. G., Stotz, D. F. y Zimmer, K. J. Versión 2022. A classification of the bird species of South America. American Ornithologists' Union. Http.
- Renjifo, L. M., Franco-Maya, A. M., Amaya-Espinel, J. D., Kattan, G. H. y Lopez-Lanús, B. (2002). Libro rojo de aves de Colombia. Serie libros rojos de especies amenazadas de Colombia. Bogotá D.C., Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio del Medio Ambiente.
- Renjifo, L. M., Gómez, M. F., Velásquez-Tibatá, J., Amaya-Villarreal, A. M., Kattan, G. H., Amaya-Espinel, J. D. y Burbano-Girón, J. (2014). Libro rojo de las aves de Colombia Volumen 1, bosques húmedos de los Andes y la costa Pacífica. Bogotá D.C., Colombia, Pontificia Universidad Javeriana e Instituto von Humboldt.
- Restall, R., Rodner, C. y Lentino, M. (2006). Birds of Northern South America, an identification guide, Vol. 2. Plates and maps. Yale University Press, New Haven and London, Londres.
- Restrepo, C. y Naranjo, L. (1987). Recuento histórico de la disminución de humedales y la desaparición de la avifauna acuática en el Valle del Cauca, Colombia. En H. Álvarez, G. Kattan y C. Murcia (Eds.). Memorias III. Cali, Colombia, Congreso de Ornitología Neotropical.
- Restrepo, J. D., Cárdenas-Rozo, A., Paniagua-Arroyave, J. F. y Jiménez-Segura, L. (2020). Aspectos físicos de la cuenca del río Magdalena, Colombia, geología, hidrología, sedimentos, conectividad, ecosistemas acuáticos e implicaciones para la biota. En, Jiménez-Segura, L. y C. A. Lasso (Eds.). XIX. Peces de la cuenca del río Magdalena, Colombia, diversidad, conservación y uso sostenible. Pp. 41-83. Serie Editorial Recursos

- Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D.C., Colombia.
- Rheingantz, M. L., Menezes, J. F. S. y Thoisy, B. (2014). Definición de la distribución, prioridades de conservación y fronteras ecológicas de la nutria neotropical Lontra longicaudis. Ciencias de la Conservación Tropical. 7, 214-229.
- Rheingantz, M. L., Trinca, C. S. (2015). Lontra longicaudis. La Lista Roja de Especies Amenazadas de la UICN 2015, e. T12304A21937379.
- Rheingantz, M. L., Santiago-Plata, V. M., Trinca, C. S. (2017). La nutria neotropical Lontra longicaudis, una actualización completa sobre el conocimiento actual y el estado de conservación de este carnívoro semiacuático. Revisión de mamíferos. 47, 291-305.
- Ricaurte, L., Patiño, J., Arias, G., Acevedo, O., Restrepo, D., Jaramillo-Villa, U., Flórez-Ayala, C., Estupiñán-Suárez, L., et al. (2015). La pluralidad del agua, tipos de humedales de Colombia-Sistema de clasificación de humedales. En U. Jaramillo, J. Cortés y C. Flórez (Eds.), Colombia Anfibia. Un país de humedales. Volumen 1 (Pp. 140). Bogotá D.C., Colombia, Instituto de Investigación de Recursos Biológicos.
- Ricklefs, R. E. (2012). Naturalists, Natural History, and the Nature of Biological Diversity. The American Naturalist, 179(4), 423-435.
- Rocková, H. y Roček, Z. (2005) Development of the pelvis and posterior part of the vertebral column in the Anura. J Anat, 206(1), 17-35.
- Roda, J., Franco, A. M., Baptiste, M. P., Mónera, C. y Gómez, D. M. (2003). Manual de identificación CITES de aves de Colombia. Serie Manuales de Identificación CITES de Colombia. Bogotá D.C., Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
- Rodríguez, J. M., Camargo, J. C., Niño, J., Pineda, A. M., Arias, L. M., Echeverry, M. A. y Miranda, C. L. (2009). Valoración de la biodiversidad en la ecorregión del eje cafetero. CIEBREG, Pereira.
- Roldán, G. (1996). Guía para el estudio de los macroinvertebrados acuáticos del departamento de Antioquia. Colombia, Fondo para la Protección del Medio Ambiente "José Celestino Mutis"-FEN COLOMBIA-Fondo colombiano de Investigaciones Científicas y Proyectos Especiales "Francisco José de Caldas"-COLCIENCIAS-Universidad de Antioquia.
- Roldán, G. (2003). Bioindicación de la calidad del agua en Colombia, Uso del método BMWP/Col. Medellín, Colombia, Editorial Universidad de Antioquia. 170 p. ISBN 958-655-671-8.
- Roldán, G. y Ramírez, J. (2008). Fundamentos de limnología neotropical 2ª Edición. Medellín, Colombia, Editorial Universidad de Antioquia.
- Rosemberg, D. M. y Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York, U.S.A., Chapman y Hill.
- Rosselli, L. y Stiles, F. G. (2012). Local and landscape environmental factors are important for the conservation of endangered wetland birds in a high Andean plateau. Waterbirds, 35, 453-469.

- Rueda-Almonacid, J. V., Lynch, J. D. y Amézquita, A. (2004). Libro rojo de los Anfibios de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Bogotá, Colombia, Conservación Internacional Colombia, Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del Medio Ambiente.
- Ruíz, E. (2002). Métodos para el estudio de las características físico-químicas del agua. Manual de Métodos en Limnología. Bogotá, Colombia, Asociación Colombiana de Limnología, Pen Clips Publicidad y Diseño.
- Ruiz, L. K., Gradstein, S. R. y Bernal, R. (2022a, Junio). Machaerium goudotii Benth. En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Ruiz, L. K., Gradstein, S. R. y Bernal, R. (2022b, Junio). Machaerium capote Dugand En Bernal, R., Gradstein, S. R. y Celis, M (Eds.). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Http://catalogoplantasdecolombia.unal.edu.co
- Salazar-Suaza, D. y Quijano Abril, M. A. (2020). Análisis multitemporal y caracterización de la vegetación hidrófita y heliófita de un cinturón de humedales urbanos en el altiplano del Oriente antioqueño. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 639-651.
- Samper, C. (2000). Ecosistemas Naturales, Restauración Ecológica e Investigación. Bogotá, Colombia, Ed Banco de Occidente.
- Samper, D. (1999) Colombia Caminos del agua. Bogotá, Colombia, Ed Banco de Occidente.
- Sánchez, C., Botello, F., Flores, J., Gómez, R., Gutiérrez, L. y Rodríguez, A. (2014). Biodiversidad de Chordata (Mammalia) en México. Revista Mexicana de Biodiversidad, 85(1), 496-504.
- Sánchez, F., Sánchez-Palomino, P. y Cadena, A. (2004). Inventario de mamíferos en un bosque de los Andes Centrales de Colombia. Caldasia, 26(1), 291-309.
- Sánchez, H. (1998). Generalidades respecto a la convención RAMSAR. En E. Guerrero (Ed.), Una aproximación a los humedales en Colombia (pp. 24-30) Colombia, FEN.
- Sánchez, H., Castaño, O. y Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. Colombia diversidad biótica I. Bogotá, Universidad Nacional de Colombia, Inderena, Fundación FES, 277-325.
- Sarmiento, C. (2016). Presentación. En J. Cortés-Duque y L. M. Estupiñán-Suárez (Eds.), Las huellas del agua. Propuesta metodológica para identificar y comprender el límite de los humedales de Colombia (pp. 340). Bogotá D.C., Colombia, Fondo Adaptación-Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
- Sarmiento, C. E (Ed.) (2010). Fauna de la Región de Campo Capote (Puerto Parra, Santander). Serie Guías de Campo del Instituto de Ciencias Naturales No. 6. Instituto de Ciencias Naturales de Colombia-Universidad Nacional de Colombia. Bogotá D.C. 146 Pp.

- Sarmiento, G. (1975). The Dry Plant Formations of South America and Their Floristic Connections. Journal of Biogeography, 2 (4), 233-251.
- Schipper, J., Chanson, J. S. y Chiozza, F., et al., (2008). The status of the world's land and marine mammals, Diversity, threat and knowledge. Science 322, 225-230.
- Scott, D. A. y Carbonell, M. (1986). Inventarío de humedales de la Región Neotropical. Slimbirdge, UK. Bogotá D.C., Colombia, IWRB. Sección de Piscicultura, Pesca y Caza.
- Scott, D. A. y Jones, T. A. (1995). Classification and Inventory of Wetlands. A Global Overview. Vegetation, 118(6), 3-1.
- Secretaria de la Convención de Ramsar. (2010). Aptitudes de participación, Establecimiento y fortalecimiento de la participación de las comunidades locales y de los pueblos indígenas en el manejo de los humedales. Manuales Ramsar para el uso racional de los humedales.
- Secretaría de la Convención de Ramsar. (2013). Manual de la Convención de RAMSAR, Guía a la Convención sobre los Humedales (RAMSAR, Irán, 1971), 6a. edición. Gland, Suiza, Secretaría de la Convención de Ramsar.
- Segnini, S., Correa, I. y Chacón, M. (2009). Tema 14. Evaluación de la calidad del agua de ríos en los andes venezolanos usando el índice biótico BMWP. ENFOQUES Y TEMÁTICAS EN ENTOMOLOGÍA, 217.
- SERI Society for Ecological Restoration International Science y Policy Working Group. (2004). The SER International Primer on Ecological Restoration. www.ser.org y Tucson, Society for Ecological Restoration International.
- Servicio Geológico Colombiano (SGC) (1976). Geología de la Plancha 226 Líbano. Escala 1, 100.000. Producto. Versión año 1976.
- Shepard, D. (1968). A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. Proceedings of the 1968 23rd ACM National Conference On, 517-524.
- SiB Colombia. (2022). Sistema de información sobre biodiversidad de Colombia. Disponible en, Http://www.sibcolombia. net.
- Sikes, R. S., Gannon, W. L. y the Animal Care and Use Committee of the American Society of Mammalogists. (2011). Guidelines of the American Society of Mammalogists for the use of wild mammals in research y education. Journal of Mammalogy, 97, 663-688.
- Simpson, M. (2019). Plant systematics. Academic press.
- Stevens, P. (2017, Julio). Angiosperm Phylogeny Website. Http://www.mobot.org/MOBOT/research/APweb/welcome.html.
- Stiles, F. G. y Bohórquez, C. I. (2000). Evaluando el estado de la biodiversidad, el caso de la avifauna de la Serranía de la Quinchas, Boyacá, Colombia. Caldasia, 22(1), 61-92.
- Stock, D. W., Weiss, K. M., Zhao, Z. (1997). Patterning of the mammalian dentition in development and evolution. BioEssays 19, 481-490.
- Streble, H. y Krauter, B. (1978). Das Leben in Wassertropfen, Mikroflora and Microfauna des Subasser, Ein Bestimmungsbuch mit 1700 Abbildungen.

- Suzán, G. A. (2005). Desmodus rotundus. Pp. 193-194., en, Los mamíferos silvestres de México (Ceballo, s G. y Oliva, G., eds). Fondo de Cultura económica/CONABIO. México, DF.
- Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M. S., Rödig, E., Wiegand, T. y Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature, 554, 519-522.
- Ten Brink, P., Badura, T., Farmer, A. y Russi, D. (2012). The economics of ecosystem and biodiversity for water and wetlands. A Briefing Note. London, United Kingdom, IEEP.
- Titus, J. H. (1990). Microtopography and woody plant regeneration in a hardwood flloodplain swamp in Florida. Bulletin of the Torrey Botanical Club, 117(4), 429-437.
- Torres-Rodríguez, S., Díaz-Triana, J. E., Villota, A. y Gómez, W. (2019). Diagnóstico ecológico, formulación e implementación de estrategias para la restauración de un bosque seco tropical interandino (Huila, Colombia). Caldasia, 41(1), 42-59.
- Traylor, M. A. (1977). A classification of the Tyrant Flycatchers (Tyrannidae). Bulletin of the Museum of Comparative Zoology, 148, 129-184.
- Trites, A. W. y Joy, R. (2005). Dietary analysis from fecal samples, How many scats are enough? Journal of Mammalogy 86, 704-12.
- Trujillo, F. y Arcila, D. (2006). Nutria neotropical Lontra longicaudis. Pp. 249-254. En, Rodriguez-Mahecha, J. V., Alberico, M., Trujillo, F., Jorgeson, J. (Eds.). Libro Rojo de los mamíferos de Colombia Serie Libros Rojos de especies Amenazadas de Colombia. Bogotá, Conservación Internacional Colombia y Ministerio de Ambiente Vivienda y Desarrollo Territorial.
- Uetz, P., Freed, P. Y. y Hošek, J (Eds.) (2019) The Reptile Database, Http://www.reptile-database.org, accessed [18-06-2022]
- Underwood, W., Anthony, R., Cartner, S., Corey, D., Grandin, T., Greenacre, C., . . . y Yanong, R. (2013). AVMA guidelines for the euthanasia of animals, 2013 edition. Schaumburg, IL, American Veterinary Medical Association.
- Urbano, P., Munevar, J., Mahecha-J., O. y Hincapié, E. (2014). Diversidad y estructura de las comunidades de Lepidoptera en la zona del ecotono entre el piedemonte llanero y sabana inundable en Casanare-Colombia (Lepidoptera, Papilionoidea). -SHILAP Revista de lepidopterología, 42(167), 433-437.
- Urbina-Cardona, J. N., Olivares-Pérez, M. y Reynoso, V. H. (2006). Herpetofauna diversity and microenvironment correlates across the pasture-edgeinterior gradient in tropical rainforest fragments in the region of Los Tuxtlas, Veracruz. Biological Conservation 132, 61-75.
- Urbina-Cardona, J. N., Nori, J. y Castro, F. (2011a). Áreas vulnerables a la invasión actual y futura de la rana toro (Lithobates catesbeianus, Ranidae) en Colombia, Estrategias propuestas para su manejo y control. Biota Colombiana 12, 23-34.
- Urbina-Cardona, J. N., Burrowes, P. A., Osorno, M., Crawford, A. J., Velasco, J. A., Flechas, S. V., Vargas-Salinas, F., Luna-Mora, V. F., Navas, C. A., Guayara-Barragán, M., Bolivar-G, W., Gutiérrez-Cárdenas, P. D. A. y Castro-Herrera, F. (2011b). Prioridades en la conservación de anfibios ante su crisis global, hacia la construcción del plan de acción para la Conservación de los anfibios de Colombia. Capitulo Z6. Páginas 10-19

- en Botero, E. y Moreno, M. I. (Eds.). 2011. Creando un clima para el cambio, La biodiversidad, servicios para la humanidad. III Congreso Colombiano de Zoología, Libro de memorias. Asociación Colombiana de Zoología. Medellín-Antioquia. 57 Pp. Disponible en Internet, www.aczcolombia.org.ISBN-978-958-570151-9.
- Valencia-Zuleta, A., Jaramillo-Martínez, A. F., Echeverry-Bocanegra, A., Viáfara-Vega, R., Hernández-Córdoba, O., Cardona-Botero, V. E., Gutiérrez-Zúñiga, J. y Castro-Herrera F. (2014). Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia. Amphibian y Reptile Conservation 8(2) [Special Section], 1-18.
- Van der Hammen, T. (1974). The pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography, 1 (1), 3-26.
- Van Toor, M. L., O'Mara, M. T., Abedi-Lartey, M., Wikelski, M., Fahr, J., Dechmann, D. K. (2019). Linking colony size with quantitative estimates of ecosystem services of African fruit bats. Current Biology 29(7), R237-R238.
- Vargas, O. (2007). Guía Metodológica para la restauración ecológica del bosque altoandino. Bogotá, Colombia, Universidad Nacional de Colombia.
- Vargas, W. G. (2002). Guía ilustrada de las plantas de las montañas del Quindío y los Andes Centrales. Universidad de Caldas.
- Vargas-Zapatas, M. A., Prince-Chacón, S. y Martínez-Hernández, N. J. (2012). Estructura poblacional de Heliconius erato hydara Hewitson, 1867 (Lepidoptera, Nymphalidae) en la reserva campesina la montaña (RCM), departamento del Atlántico, Colombia. Boletín de la Sociedad Entomológica Aragonesa (SEA), 51, 273-281.
- Vera, P. y Villegas, C. I. (2018). Trade-off entre servicios ecosistémicos y sus implicaciones el diseño de un esquema de pago por servicios ambientales. Universidad Nacional de Colombia.
- Verhelst-Montenegro, J. C. y Salaman, P. (2015) Checklist of the Birds of Colombia / Lista de las Aves de Colombia. Electronic list, version '18 May 2015'. Atlas of the Birds of Colombia. Available from Https://sites.google.com/site/haariehbamidbar/atlas-of-the-birds-of-colombia.
- Vidal M. A. y Labra, A. (2008). Herpetología de Chile. Science Verlag® Pp. 579.
- Viera, M., Cardozo, A. y Krause, L. (2011). Distribution, hábitat and conservation status of two threatended annual fishes (Rivulidae) from southern Brazil. Endagered Species Research, 13 (79), 79-85.
- Vilardy, S., Jaramillo, ú., Flórez, C., Cortés Duque, J., Estupiñán, L., Rodríguez, J., Acevedo, O., Samacá, W., Santos, A., Peláez, S. y Aponte, C. (2014). Principios y criterios para la delimitación de humedales continentales, una herramienta para fortalecer la resiliencia y la adaptación al cambio climático en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Http://repository. humboldt.org.co/bitstream/handle/20.500.11761/31444/255.pdf?sequence=1yisAllow ed=y.
- Villa-Navarro, F. A. y Losada-Prado, S. (1999)."Aspectos tróficos de Petenia umbrifera (Pisces, Cichlidae) en la represa de Prado (Tolima)". En, Colombia. Revista De La

- Asociación Colombiana De Ciencias Biológicas ISSN, 0120-4173 ed, Asociación Colombiana De Ciencias Biológicas v. 11 fasc. 1 p. 24-35.
- Villa-Navarro, F. A. y Losada-Prado, S. (2004)."Aspectos bioecológicos del Caloche, Sternopygus macrurus (Gymnotiformes, Sternopygidae), en la Represa de Prado, Tolima, Colombia". En, Colombia. Dahlia ISSN, 0122-9982 ed, Unibiblos Universidad Nacional De Colombia, 7, 49-56.
- Villanueva, B., Melo, O. y Rincón, M. (2014). Estado del conocimiento y aportes a la flora vascular del bosque seco del Tolima. Colombia Forestal, 18(1), 9-23.
- Villareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M. y Umaña A. M. (2004). Manual de métodos para el desarrollo de inventarios de biodiversidad. Programa de Inventarios de Biodiversidad. Bogotá, Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
- Villegas, M. y Garitano, A. (2008). Las comunidades de aves como indicadores ecológicos para programas de monitoreo ambiental en la ciudad de La Paz, Bolivia. Ecología en Bolivia, 43(2), 146-153.
- Viñals. (2004). New tools to manage wetland cultural heritage. 5th European Regional Meeting of the RAMSAR Convention.organizado por Convenio Internacional sobre Humedales o de RAMSAR. Yerevan (Armenia), 4-8 diciembre, 2004.
- Warren, A. D., Davis, K. J., Stangeland, E. M., Pelham, J. P. y Grishin, N. V. (2015). Illustrated Lists of American Butterflies (North and South America).
- Wayne-Nelson, R. y Weller, E. (1984). A better rationale for wetland management. Environmental Management, 8(4), 295-308.
- Wells, K. D. (1977). The social behaviour of anuran amphibians. Animal Behaviour 25, 666-693.
- Wildman, D. E., Chen, C., Erez, O., et al. (2006). Evolution of the mammalian placenta revealed by phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America 103, 3203-3208.
- Wilson, D. E. y Reeder, D. M (Eds.) (2005). Mammal Species of the World, A Taxonomic and Geographic Reference. Baltimore, U.S.A., JHS Press.
- World Flora Online (WFO) (2022, Junio). An Online Flora of All Known Plants, Supporting the Global Strategy for Plant Conservation. Http://www.worldfloraonline.org/.
- Wright S. J., Zeballos, H., Domínguez, I., Gallardo, M. M., Moreno, M. C., Ibáñez, R. (2000). Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conservation Biology, 14, 227-239.
- Wunderle, J. M. Jr,. (1994). Census methods for Caribbean land birds. New Orleans, Louisiana, U.S.A., Southern forest experiment Station, Forest service, U.S. Department of agriculture.
- Yacubson, S. (1969). Algas de ambientes acuáticos continentales, nuevas para Venezuela (Cyanophyta, Chlorophyta). Bol. Centro Inv. Biol., Univ. Zulia, 3, 1-87.
- Zahler, P. y Rosen, T. (2013). Endangered Mammals. ScienceDirect 2, 188-198.

- Zhang, B., Shi y., Liu, J. y Xu, J. (2017). Economic values and dominant providers of key ecosystem services of wetlands in Beijing, China. Ecological Indicators, 77, 48-58.
- Zuñiga-Upegüi, P., Villa-Navarro, F. A., Ortega-Lara, A. y Reinoso-Flórez, G. (2005)."Relación longitud-peso y frecuencias de tallas para los peces del género Chaetostoma (Siluriformes, Loricariidae) de la cuenca del río Coello, Colombia". En, Colombia Dahlia ISSN, 0122-9982 ed, Unibiblos Universidad Nacional De Colombia, 8, 47-52.