PLAN DE MANEJO AMBIENTAL HUMEDAL CARACOLIZAL

República de Colombia

MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE

Corporación Autónoma Regional del Tolima, CORTOLIMA

OLGA LUCIA ALFONSO LANNINI

Director General

CARLOS ENRIQUE QUIROGA CALDERON

Subdirector planeación y gestión tecnológica

LUIS FERNANDO POVEDA

Supervisión

Grupo de Investigación en Zoología de la Universidad del Tolima

FRANCISCO ANTONIO VILLA NAVARRO

Coordinador del proyecto

SERGIO LOSADA PRADO

Coordinador General

GLADYS REINOSO FLÓREZ

Coordinadora

GIOVANY GUEVARA CARDONA

Coordinador

Fotografías texto

Grupo de Investigación en Zoología de la Universidad del Tolima (GIZ, 2021)

CORTOLIMA

Nit: 890.704.536-7.

PBX: +57(8) 265 5378 - 2654553

Dirección: Av. Ferrocarril Calle 44 Esquina - Ibaqué, Colombia.

Universidad del Tolima

Nit 890.700.640-7

PBX +57(8) 2 771212

B. Santa Helena Parte Alta. A.A. 546 - Ibagué, Colombia.

EQUIPO TÉCNICO

Sergio Losada Prado Coordinador Grupo de Investigación en

Zoología de la Universidad del Tolima

Francisco Antonio Villa Navarro Coordinador del Provecto

Gladys Reinoso Flórez Coordinadora

Giovanny Guevara Cardona Coordinador

Laura Daniela Rojas Sandino Coordinadora Técnica del Proyecto

Edison Jahir Duarte Ramos Área: Servicios ecosistémicos

Stephania Parada Giraldo Área: Flora

Francisco Antonio Villa Navarro Área: Ictiología

Diana Carolina Montoya Ospina

Sergio Losada Prado Área: Herpetología

Jessica Nathalia Sanchéz Guzmán

Sergio Losada Prado Área: Ornitología

Jessica Nathalia Sánchez Guzmán

Gladys Reinoso Flórez Área: Lepidópteros diurnos

Andrea Paola Tafur Acosta

Giovanny Guevara Cardona Área: Mastozoología

Andrea Paola Tafur Acosta

Fernando Poveda Subdirección de Planeación.

Áreas Protegidas. CORTOLIMA

CONTENIDO

INTRO	DUCCIÓN	7
MARC	O TEÓRICO	9
NORM	ATIVIDAD	15
OBJET	IVOS	22
CAPIT	JLO 1. LOCALIZACIÓN Y CLASIFICACIÓN	23
1. 1.1. 1.2.	LOCALIZACIÓN Y CLASIFICACIÓN UBICACIÓN GEOGRÁFICA CLASIFICACIÓN Y CATEGORIZACIÓN DEL HUMEDAL	24
CAPIT	JLO 2. COMPONENTE FÍSICO	27
2. 2.1. 2.2. 2.3. 2.4. 2.4.1. 2.4.2. 2.4.3.	COMPONENTE FÍSICO GEOMORFOLOGÍA Y SUELOS CLIMA HIDROGRAFÍA HIDROLOGÍA Balance hídrico de largo plazo Curvas Cota-Volumen y Cota-Área Lámina de agua por condición hidrológica	29 32 33 33 33 36
CAPIT	JLO 3. COMPONENTE BIÓTICO	
3. 3.1. 3.1.1. 3.1.2. 3.1.3. 3.2. 3.2.1. 3.2.2. 3.2.3.	COMPONENTE BIÓTICO. FLORA	46 48 50 55 55 65 74
	JLO 4. COMPONENTE CALIDAD DEL AGUA	
4.1. 4.2.	CALIDAD DEL AGUA	98 02
	JLO 5. VÍNCULOS ENTRE LAS COMUNIDADES Y LOS SERVICIOS I COSISTEMAS1	05
5.1.		.ok 06
5.2. 5.3.	METODOLOGÍA 1 RESULTADOS 1	

CAPITU	ILO 6. COMPONENTE AMBIENTAL	112
6. 6.1. 6.2. 6.3.	COMPONENTE AMBIENTAL	113 114 116
6.3.1. 6.4.	ANÁLISIS CUALITATIVO DEL HUMEDAL CARACOLIZAL	119
	ILO 7. VALORACIÓN Y EVALUACIÓN	
7. 7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4.	VALORACIÓN Y EVALUACIÓN EVALUACIÓN ECOLÓGICA Tamaño y posición Conectividad ecológica Diversidad biológica Naturalidad	123 123 123 123 124
7.1.5. 7.1.6.	RarezaFragilidad	
7.1.7. 7.2. 7.2.1. 7.2.2.	Posibilidades de mejoramiento	125 126 126
CAPITU	ILO 8. ZONIFICACIÓN DEL HUMEDAL	127
8.2.3. 8.2.4.	ZONIFICACIÓN DEL HUMEDAL Aspectos metodológicos Delimitación de Área de Estudio Escala de edición Sistemas de Información Geográfica Delimitación de Humedales Conservación de los Humedales Criterios para la Zonificación Ambiental Resultados Zonificación Principal Zonificación Ambiental Intermedia Coberturas y usos de la tierra Rondas Hídricas	128 128 129 130 130 130 130 132 133
9.	PLAN DE MANEJO AMBIENTAL	137
9.1. 9.2. 9.3. 9.4. 9.5. 9.5.1.	INTRODUCCIÓN METODOLOGÍA VISIÓN MISIÓN OBJETIVOS Objetivo General del Plan de Manejo	137 139 139 139 139
9.5.2. 9.6.	Objetivos específicosTIEMPOS DE EJECUCIÓN	139 139

Plan de Manejo Ambiental (PMA) Humedal Caracolizal

9.7.	ESTRATEGIAS	140
		142
9.9.	PLAN DE TRABAJO ANUAL	¡Error! Marcador no definido

INTRODUCCIÓN

Los humedales son considerados ecosistemas muy sensibles a la intervención de origen antrópico, en Colombia son vitales dentro de la amplia variedad de ecosistemas y, al ofrecer distintos bienes y servicios, constituyen en un reglón importante de la economía nacional, regional y local (Ministerio del Medio Ambiente, 2002). Los humedales sirven para mitigar los impactos generados por el ciclo hidrológico de una región y, paralelamente, proveen de hábitat a distintos organismos, incluyendo aquellas especies que recurren a la migración como estrategia adaptativa. Proveen de hábitat, alimento, refugio, y áreas de crianza y reproducción a un elevado número de especies de peces, aves, anfibios, reptiles, mamíferos e invertebrados. Son reconocidos por su alto nivel de endemismos, en particular de peces e invertebrados, por su fauna altamente especializada y por ser refugio de una gran diversidad de especies de aves migratorias. Los humedales tienen también un papel ecológico muy importante en el control de la erosión, la sedimentación y las inundaciones; en el abastecimiento y depuración del agua, y en el mantenimiento de pesquerías. En la actualidad estos sistemas han reducido su extensión considerablemente debido al drenado y relleno de sus áreas para diferentes usos (Aguilar, 2003).

Su afectación obedece a distintos factores, generalmente antrópicos. Uno de ellos ha sido la inadecuada planificación y el uso de técnicas nocivas, así la ejecución de políticas de desarrollo sectorial inconsistentes y desarticuladas (Ministerio del Medio Ambiente, 2002). Con el fin de detener la pérdida de humedales se han desarrollado distintas iniciativas, una de ellas es la Convención Relativa a los Humedales de Importancia Internacional, especialmente como hábitat de aves acuáticas, adoptada en RAMSAR en 1971 (Sánchez, 1998). Igualmente, la Agenda 21 plantea como prioridad para los recursos de agua dulce la protección de los ecosistemas y la ordenación integrada de los recursos hídricos (Ministerio del Medio Ambiente, 2002).

La declinación en la producción de las especies acuáticas en general se ha asociado a la pérdida de diversos tipos de hábitat estuarinos y ribereños, como la vegetación acuática sumergida, vegetación marginal halófita, sustratos someros lodosos, arrecifes ostrícolas y restos de vegetación arbórea. Sin embargo, la declinación en el tamaño de las poblaciones de igual manera es causada por una serie de procesos biológicos, geológicos, físicos y químicos, tales como la alteración física de los hábitat, la modificación de los influjos de agua dulce y la contaminación crónica o accidental (Barba, 2004). Los humedales poseen atributos o valores intrínsecos que los distinguen de otros ecosistemas y es ahí donde reside su gran importancia en el sistema vital del planeta y el hecho de detentar la máxima consideración desde el punto de vista de la conservación (Viñals, 2004).

Situaciones como la agricultura intensiva, la urbanización, la contaminación, la desecación, sobreexplotación de recursos y la introducción de especies foráneas, han afectado los procesos naturales que se dan en los humedales convirtiéndolos en ecosistemas frágiles con pérdida de capacidad productiva.

Debido a la alteración de estos ecosistemas el Estado propone su protección mediante la Ley 99 de 1993, en su artículo 5 numeral 24, donde establece la responsabilidad del Ministerio del Medio Ambiente en relación con los humedales, y menciona que: "le corresponde regular las condiciones de conservación y manejo de ciénagas, pantanos, lagos, lagunas y demás ecosistemas hídricos continentales". El Ministerio del Medio Ambiente adopta esta responsabilidad por medio de la Resolución 157 del 12 de febrero de 2004, y en su artículo 4, dispone en relación con el Plan de Manejo Ambiental, que las Autoridades Ambientales competentes deberán elaborarlos y ejecutarlos para los humedales prioritarios de su jurisdicción, los cuales deberán partir de una delimitación, caracterización y zonificación para la definición de medidas de manejo, con la participación de los distintos interesados. Así mismo, el Plan de Manejo Ambiental deberá garantizar el uso sostenible y el mantenimiento de su diversidad y productividad biológica (Resolución 196 Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 01 de Febrero de 2006).

En el departamento del Tolima se tiene identificados más de 655 cuerpos de agua, dentro de los cuales se destaca 300 lagunas de cordillera, de origen glaciar, localizadas en la cordillera Central en áreas de los Parques Nacionales Naturales (Los nevados, Las hermosas y Nevado del Huila), así mismo se han identificado numerosas lagunas y sistemas de humedales en las zonas bajas principalmente en la zona de vida Bosque Seco Tropical del departamento. A pesar de esta variedad de ecosistemas acuáticos, en el departamento del Tolima solo se han realizado algunos estudios relacionados con la caracterización de flora y fauna en humedales ubicados principalmente en el Valle del Magdalena.

Teniendo en cuenta lo anterior y consciente de la importancia de los humedales, y la fauna y flora que los caracteriza, la Corporación Autónoma del Tolima CORTOLIMA, en Convenios Interadministrativos con la Universidad del Tolima - Grupo de Investigación en Zoología (GIZ), han formulado 35 Planes de Manejo Ambiental (PMA), más 3 PMA desarrollados con CORPOICA. Con los resultados obtenidos de estos trabajos se ha llegado a considerar relevante actualizar 21 PMA, ubicados en las zonas bajas y altas del departamento del Tolima. Por esta razón, el objetivo del presente Plan de Manejo Ambiental es la "Revisión, ajuste y caracterización de Humedal Caracolizal, ubicado en la vereda Chimbi-Bombote del municipio de Melgar, principalmente en aspectos bióticos (flora y fauna) y topobatimétricos, como también la actualización de la línea base de acciones concretas y directas para su recuperación y protección.

MARCO TEÓRICO

LOS HUMEDALES

Existen más de cincuenta definiciones de humedales (Dugan 1992) y los expertos debaten la conveniencia de acuñar una de uso general (Scott & Jones 1995). El Ministerio del Medio Ambiente ha adoptado la definición de la Convención RAMSAR, la cual establece: «...son humedales aquellas extensiones de marismas, pantanos, turberas o aguas de régimen natural o artificial, permanentes o temporales, estancadas o corrientes, dulces, salobres o saladas, incluyendo las extensiones de agua marina cuya profundidad en marea baja no exceda de seis metros». (Scott & Carbonell, 1986).

Cowardin et al. (1979) sugirieron que los humedales fueran reconocidos por su carácter de interfaz entre los sistemas terrestres y acuáticos. Por otro lado, Farinha et al. (1996) ofrecieron criterios operativos, como los siguientes: El límite entre tierra con cobertura vegetal predominantemente hidrofítica y aquella con cobertura mesofítica o xerofítica; el límite entre suelo predominantemente hídrico y aquel predominantemente seco; en aquellos sitios en donde no hay ni suelo ni vegetación, el límite entre la tierra que es inundada o saturada con agua en algún momento del año y aquella que no lo es.

Las funciones ecológicas y ambientales de los humedales colombianos representan numerosos beneficios para la sociedad. En primer término, son sistemas naturales de soporte vital, y base de actividades productivas y socioculturales, tales como economías extractivas basadas en el uso de muchas especies, a través de la pesca artesanal y de sustento, caza y recolección y el pastoreo y la agricultura en épocas de estiaje (Ministerio del Medio Ambiente - Instituto Alexander Von Humboldt, 1999). Sin embargo, los humedales no han merecido atención prioritaria, siendo entonces ignorada su contribución a la economía del país.

Por su naturaleza, los humedales son ecosistemas altamente dinámicos, sujetos a una amplia gama de factores naturales que determinan su modificación en el tiempo aún en ausencia de factores de perturbación. Sus atributos físicos, principalmente hidrográficos, topográficos y edáficos son constantemente moldeados por procesos endógenos tales como la sedimentación y la desecación y por fenómenos de naturaleza principalmente exógena, tales como avalanchas, el deslizamiento de tierras, las tormentas y vendavales, la actividad volcánica y las inundaciones tanto estacionales como ocasionales.

Se puede decir que un humedal degradado es un humedal que ha perdido algunos de sus valores o funciones o todos ellos a causa de la desecación, por tanto hay varias buenas razones para iniciar actividades de restauración y rehabilitación de humedales degradados. En esencia, se trata de las mismas razones para conservar los humedales naturales: las valiosas funciones y servicios que prestan. Vale la pena establecer una definición para los términos valores y funciones de los humedales. Las funciones son procesos químicos, físicos y biológicos o atributos

del humedal que son vitales a la integridad del sistema y que operan sean o no considerados importantes para la sociedad. Los valores son atributos del humedal que no son necesariamente importantes a la integridad del sistema pero que son percibidos como de importancia a la sociedad. La importancia social de las funciones y valores de un humedal se define como el valor que la sociedad le asigna a una función o valor evidenciado por su valor económico o reconocimiento oficial (Adamus et al., 1991).

Pese a que es muy difícil restaurar humedales exactamente como eran antes de su conversión y que incluso puede ser imposible, existen muchos ejemplos de proyectos de restauración que han restablecido al menos algunas de estas funciones y valores. Debido a la dificultad que conlleva un proceso de restauración, es indispensable determinar el criterio de éxito de la misma desde un comienzo y en forma detallada. Otra limitante es la ausencia de información sobre el estado de los humedales antes de ser impactados.

RESTAURACIÓN ECOLÓGICA Y REHABILITACIÓN AMBIENTAL

Las perturbaciones naturales son un elemento integral de los ecosistemas de todo tipo. Estas perturbaciones afectan la composición y estructura de los ecosistemas, generando cambios permanentes y una dinámica propia. La velocidad de recuperación de los ecosistemas depende de varios factores, pero principalmente de la magnitud y frecuencia. Muchos modelos extractivos y productivos de pequeña escala generan impactos comparables con las perturbaciones naturales, de los cuales se recuperan fácilmente, la capacidad de un ecosistema para recuperarse de estos cambios se conoce bajo el término de resiliencia: entre mayor resiliencia mayor capacidad de recuperación a las perturbaciones (Samper, 1999).

Con la perturbación de un ecosistema se produce un cambio en la estructura, usualmente representada en una reducción en el número de especies y complejidad del ecosistema. Al mismo tiempo se puede producir un impacto sobre la función, por ejemplo la reducción en la capacidad de reciclaje de nutrientes. En sentido estricto, la restauración de un ecosistema implica el retorno a la estructura y función original. El problema conceptual es como definir el ecosistema original, sobre todo si tenemos en cuenta que todos los ecosistemas cambian con el tiempo.

En el estudio de los ecosistemas se tiene en cuenta su composición de especies, su estructura y su funcionamiento (procesos), porque en últimas la restauración ecológica es un tipo de manejo de ecosistemas que apunta a recuperar la biodiversidad, su integridad y salud ecológicas. La biodiversidad es su composición de especies (principalmente de los productores primarios, las plantas), la integridad ecológica es su estructura y función y la salud ecológica es su capacidad de recuperación después de un disturbio (resistencia a disturbios y resiliencia), lo cual garantiza su sostenibilidad.

En consecuencia la capacidad de restaurar un ecosistema dependerá de una gran cantidad de conocimientos, como por ejemplo: el estado del ecosistema antes y

después del disturbio, el grado de alteración de la hidrología, la geomorfología y los suelos, las causas por las cuales se generó el daño; la estructura, composición y funcionamiento del ecosistema preexistente, la información acerca de las condiciones ambientales regionales, la interrelación de factores de carácter ecológico cultural e histórico: es decir la relación histórica y actual entre el sistema natural y el sistema socioeconómico, la disponibilidad de la biota nativa necesaria para la restauración, los patrones de regeneración, o estados sucesionales de las especies (por ejemplo, estrategias reproductivas, mecanismos de dispersión, tasas de crecimiento y otros rasgos de historia de vida o atributos vitales de las especies), las barreras que detienen la sucesión y el papel de la fauna en los procesos de regeneración (Vargas, 2007).

El éxito en la restauración también dependerá de los costos, de las fuentes de financiamiento y voluntad política de las instituciones interesadas en la restauración; pero ante todo de la colaboración y participación de las comunidades locales en los proyectos.

Restauración ecológica

La Sociedad Internacional para la Restauración Ecológica (SERI por sus siglas en inglés) define la restauración ecológica como "el proceso de asistir la recuperación de un ecosistema que ha sido degradado, dañado, o destruido" (SER, 2004). En otras palabras la restauración ecológica es el esfuerzo práctico por recuperar de forma asistida las dinámicas naturales tendientes a restablecer algunas trayectorias posibles de los ecosistemas históricos o nativos de una región. Se entiende que las dinámicas naturales deben estar dirigidas a la recuperación, no de la totalidad sino de los componentes básicos de la estructura, función y composición de especies, de acuerdo a las condiciones actuales en que se encuentra el ecosistema que se va a restaurar (SER, 2004).

La visión ecosistémica implica que lo que debe retornar a un estado predisturbio son las condiciones ecológicas que garantizan la recuperación de la composición estructura y función del ecosistema y que recuperan servicios ambientales. Desde este punto de vista la restauración es un proceso integral de visión ecosistémica tanto local, como regional y del paisaje, que tiene en cuenta las necesidades humanas y la sostenibilidad de los ecosistemas naturales, seminaturales y antrópicos (Vargas, 2007).

El valor de usar la palabra restauración desde el punto de vista ecosistémico es que nos ayuda a pensar en todos los procesos fundamentales de funcionamiento de un ecosistema, especialmente en los procesos ligados a las sucesiones naturales (Cairns, 1987), sus interacciones y las consecuencias de las actividades humanas sobre estos procesos.

Rehabilitación

Varios autores utilizan la palabra rehabilitación como sinónimo de restauración. Pero en realidad su uso presenta diferencias. La rehabilitación no implica llegar a un estado original. Por esta razón la rehabilitación se puede usar para indicar cualquier acto de mejoramiento desde un estado degradado (Bradshaw, 2002), sin tener como objetivo final producir el ecosistema original. Es posible que podamos recuperar la función ecosistémica, sin recuperar completamente su estructura, en este caso se realiza una rehabilitación de la función ecosistémica, muchas veces incluso con un reemplazo de las especies que lo componen (Samper, 2000).

En muchos casos la plantación de árboles nativos o de especies pioneras dominantes y de importancia ecológica puede iniciar una rehabilitación.

Revegetalización

Es un término utilizado para describir el proceso por el cual las plantas colonizan un área de la cual ha sido removida su cobertura vegetal original por efecto de un disturbio. La revegetalización no necesariamente implica que la vegetación original se reestablece, solamente que algún tipo de vegetación ahora ocupa el sitio. Por ejemplo, muchas áreas que sufren disturbios son ocupadas por especies invasoras que desvían las sucesiones a coberturas vegetales diferentes a las originales (Vargas, 2007).

ESTRATEGIAS PARA LA RESTAURACIÓN ECOLÓGICA DE HUMEDALES

La restauración es un componente de la planificación nacional para la conservación y uso racional de los humedales. De acuerdo con la 8ª reunión de la Conferencia de las partes implicadas en la convención sobre humedales RAMSAR (2002) se establecen principios y lineamientos para la restauración de humedales en el documento RAMSAR COP8 Resolución VIII.16.

A continuación se enuncian algunos principios de consideración en los proyectos de restauración de humedales:

- 1. Comprensión y declaración clara de metas, objetivos y criterios de rendimiento.
- 2. Planificación detenida para reducir posibilidades de efectos secundarios indeseados.
- 3. Examen de procesos naturales y condiciones reinantes durante la selección, preparación y elaboración de proyectos.
- 4. No debilitar esfuerzos para conservar los sistemas naturales existentes.
- 5. Planificación a escala mínima de cuenca de captación, sin desestimar el valor de hábitats de tierras altas y los nexos entre estos y hábitats propios de humedales.
- 6. Tomar en cuenta principios que rigen la asignación de recursos hídricos y el papel que la restauración puede desempeñar en el mantenimiento de las funciones ecológicas de los humedales.
- 7. Involucrar a todos los interesados directos en un proceso abierto
- 8. Gestión y monitoreo continuos (custodia a largo plazo).

Lograr la restauración o rehabilitación de un humedal requiere en primer lugar del restablecimiento del régimen hidrológico, lo cual depende de actividades que consisten principalmente en eliminar obras de infraestructura que impidan el flujo de agua al humedal, o tubos y canales que drenan el agua de este. Sin embargo, la regulación hídrica del humedal también se relaciona con actividades que conciernen al control de la entrada de sedimentos, residuos sólidos y flujos contaminantes y la reconfiguración geomorfológica del sitio.

El régimen hidrológico puede recuperarse de manera indirecta si se controla la calidad del agua a partir de las concentraciones de nutrientes, la explotación de acuíferos y manantiales abastecedores, si se mantiene la cobertura vegetal en las partes altas de las cuencas. Dado que el aporte de sedimentos está relacionado con el régimen hidrológico, en ocasiones es necesario construir gaviones o estructuras de retención de suelo. En otros casos se deben quitar las presas que retienen el sedimento o construir playas y dunas protectoras (Vargas, 2010).

Otro de los factores relacionados con el ambiente físico es la restitución de la microtopografía del sustrato porque determina la variación de factores como el potencial de oxidoreducción y temperatura, y/o la distribución y establecimiento de las especies. Las especies vegetales de los humedales son susceptibles a variaciones pequeñas en el relieve del sustrato en escalas de centímetros a metros (Collins et al. 1982, Titus 1990). La reconformación física del humedal involucra técnicas de empleo de maquinaria y manuales para estabilizar la geoforma y al mismo tiempo propiciar la heterogeneidad en el relieve.

En segundo lugar es necesario el control de especies invasoras acuáticas, semiacuáticas y terrestres. Esto puede realizarse a través de métodos como el entresacado manual o la remoción con maquinaria liviana. Es conveniente hacerlo antes del establecimiento de especies vegetales nativas ya que es otra de las barreras a la restauración. El establecimiento de especies vegetales en los humedales tiene dos alternativas metodológicas (Lindig-Cisneros & Zedler, 2005):

- Métodos de diseño: esta aproximación toma en cuenta la estrategia de historia de vida de las especies como el factor más importante en el desarrollo de la vegetación en un sitio.
- Esta estrategia enfatiza aproximaciones intervencionistas basadas en resultados predecibles ya que involucra la selección e introducción de especies con implementación de medidas necesarias para su permanencia.
- Métodos de autodiseño: consisten en permitir que las comunidades vegetales se organicen espontáneamente dejando que las especies se establezcan de manera natural colonizando el sitio. El restaurador puede plantar especies vegetales o no pero las condiciones ambientales naturales determinarán la permanencia de la vegetación (Middleton 1999).

Al igual que los métodos de diseño la creación de hábitats para la fauna requiere de la selección de especies vegetales de acuerdo a las especies animales. Restablecer la vegetación de los alrededores del humedal involucra sembrar especies nativas que sirvan como barrera, perchas vivas y refugios. Al final del proceso es imprescindible restablecer también la vegetación de los alrededores. Algunos criterios para el manejo de la cobertura vegetal terrestre de un humedal son: diseño de las plantaciones, diversidad de especies, conectividad interna, atrayentes (perchas y árboles de fructificación), condiciones edáficas, alternancia de corredores, estratificación, protección de la franja litoral, zonas de recreación y vegetación de transición.

Dentro de los atributos o variables de medición recomendables en el monitoreo de la restauración de humedales se reconocen los siguientes (Callaway et al. 2001):

- Hidrología: régimen de inundación, nivel freático, tiempo de retención de agua, caudales de entradas y salidas, tasas de flujo, elevación, sedimentación y erosión.
- Calidad del agua: temperatura del agua y oxígeno disuelto, pH, turbidez y estratificación de la columna de agua, nutrientes.
- Suelos: contenido de agua, textura, salinidad, densidad aparente, pH, potencial de reducción, contenido de materia orgánica, nitrógeno total, nitrógeno inorgánico, procesos del nitrógeno, descomposición, sustancias tóxicas.
- Vegetación acuática: porcentaje de cobertura, composición de especies, etapas de sucesión.
- Vegetación terrestre: mapeo, cobertura y altura de plantas vasculares, arquitectura del dosel, tamaño de parches y distribución de especies particulares, biomasa epigea, biomasa hipogea, estimación visual de algas y tipo dominante, concentración de nitrógeno en tejidos.
- Fauna: tasa de colonización, composición de especies, densidad, estructura poblacional, crecimiento, periodos de migración, anidación y cuidado de crías, relación reptiles/mamíferos. Entre los grupos considerados como indicadores biológicos para realizar el seguimiento de estos parámetros se encuentran los Macroinvertebrados acuáticos, peces y aves acuáticas.

NORMATIVIDAD

Desde finales de la década de los 80 y principios de los 90 se empezaron a gestionar en Colombia los primeros pasos para la conservación de los humedales del país. En este sentido, en 1991, durante la Segunda Reunión de los Miembros Sudamericanos de la Unión Mundial para la Conservación de la Naturaleza (UICN), el Programa Mundial de Humedales de la UICN convocó un taller en donde se recomendó la realización de otros talleres de Humedales en cuatro países de la región para la elaboración de la Estrategia Nacional de Conservación de los Humedales.

Posteriormente, en 1992 se llevó a cabo en Bogotá, el Primer Taller Nacional de Humedales, en el cual se construyó de manera informal un Comité ad hoc con el fin de canalizar acciones tendientes a la conservación de estos ecosistemas (Naranjo, 1997).

Con la creación del Ministerio del Medio Ambiente mediante la Ley 99 de 1993, se reorganizó el sistema nacional encargado de la gestión ambiental y en la estructura interna del Ministerio se creó una dependencia específica para el tema de los humedales. En 1996, esta dependencia generó un documento preliminar de lineamientos de Política para varios ecosistemas, incluyendo los humedales. Un año más tarde, el Ministerio del Medio Ambiente realizo una consultoría con el Instituto de Investigaciones Biológicas Alexander von Humboldt con el fin de proporcionar las bases técnicas para la formulación de una política nacional de estos ecosistemas acuáticos. Los resultados de dicha consultoría hacen parte de la publicación "Humedales Interiores de Colombia, Bases Técnicas para su conservación y Desarrollo Sostenible". En este mismo sentido, el Ministerio realizó en 1999 un estudio que identifico las prioridades de gestión ambiental de varios ecosistemas, entre ellos los humedales.

Por otra parte, en el plano internacional, el Ministerio del Medio Ambiente realizó desde su creación las gestiones políticas y técnicas para que el Congreso de la Republica y la Corte Constitucional aprobaran la adhesión del país a la Convención RAMSAR. Lo anterior se logró mediante la Ley 357 del 21 de enero de 1997, produciéndose la adhesión protocolaria el 18 de junio de 1998.

La Convención RAMSAR (2000), plantea que la perturbación de los humedales debe cesar, que la diversidad de los que permanecen debe conservarse, y, cuando sea posible, se debe procurar rehabilitar o restaurar aquellos que presenten condiciones aptas para este tipo de acciones.

Por medio de la Resolución 196 de 2006 se adopta la Guía Técnica para la Formulación, Complementación o Actualización, por parte de las autoridades ambientales competentes en su área de jurisdicción de los Planes de Manejo para los Humedales Prioritarios en Colombia y para la delimitación de los mismos. Así mismo, la conservación de estos ecosistemas es prioritaria para cumplir con los objetivos de protección contemplados en otros tratados internacionales de los

cuales Colombia es parte, como por ejemplo el Convenio sobre la Diversidad Biológica.

En el párrafo 1 del artículo 3 de la Convención RAMSAR se estipula que "Las Partes Implicadas deberán elaborar y aplicar su plantificación de forma que favorezca la conservación de los humedales incluidos en la Lista de Humedales de Importancia Internacional, y en la medida de lo posible, el uso racional de los humedales de su territorio."

Con este propósito, en la 7a COP (Conferencia de las Partes) celebrada en Costa Rica en 1999, se aprobaron los Lineamientos para Elaborar y Aplicar Politicas Nacionales de Humedales, en los cuales se mencionan los siguientes elementos para lograr su conservación:

- Fijación de objetivos de conservación de humedales en las políticas gubernamentales
- Fortalecimiento de la coordinación y la comunicación entre los organismos gubernamentales
- Creación de más incentivos a la conservación de los humedales
- Fomento de un mejor manejo de humedales después de su adquisición o retención
- Conocimientos más elaborados y su aplicación
- Educación dirigida al público en general, a los decisores, los propietarios de tierras y al sector privado.
- Fomento de la participación de las organizaciones no gubernamentales y las comunidades locales.

Colombia cuenta con herramientas adecuadas para la protección y conservación de los humedales y es así como a partir de su Constitución Política de 1991 se "eleva el medio ambiente a la calidad de derecho constitucional colectivo, estableciendo derechos y deberes de la sociedad en relación con el manejo y protección de los recursos naturales, instando como elemento constitucional el desarrollo sostenible y asignando funciones de protección ambiental a diferentes autoridades del poder público".

NORMA	AÑO	NOMBRE	INSTITUCIÓN	DESCRIPCIÓN
Convención	1971	RAMSAR	Convencion de RAMSAR	Convención Relativa a los Humedales de Importancia Internacional especialmente como Hábitat de Aves Acuáticas.
Decreto-ley	1974	Código de los Recursos Naturales	Ministerio de Ambiente y	Art.137 señala que serán objeto de protección y control

NORMA	AÑO	NOMBRE	INSTITUCIÓN	DESCRIPCIÓN
		Renovables y Protección del Medio Ambiente.	Desarrollo Sostenible	especial las fuentes, cascadas, lagos y otras corrientes de agua naturales o artificiales, que se encuentren en áreas declaradas dignas de protección.
Decreto	1978	Decreto 1541	Ministerio de Agricultura	Por el cual se reglamenta la parte III del libro II del Decreto Ley 2811 de 1974; «De las aguas no marítimas» y parcialmente la Ley 23 de 1973.Normas relacionadas con el recurso agua. Dominio, ocupación, restricciones, limitaciones, condiciones de obras hidráulicas, conservación y cargas pecuniarias de aguas, cauces y riberas.
Decreto	1984	Decreto 1594	Ministerio de Agricultura	Por el cual se reglamenta parcialmente el Título 1 de la Ley 09 de 1979, así como el Capítulo II del Título VI - Parte III - Libro II y el Título III de la parte III - Libro I - del Decreto 2811 de 1974 en cuanto a Usos del Agua y Residuos Líquidos. Los usos de agua en los humedales, dados sus parámetros físicosquímicos son: Preservación de Flora y Fauna, agrícola, pecuario y recreativo.
Constitución	1991	Constitución política de 1991	Gobierno de Colombia	Artículo 80. El Estado planificará el manejo y aprovechamiento de los

NORMA	AÑO	NOMBRE	INSTITUCIÓN	DESCRIPCIÓN
				recursos naturales, para garantizar su desarrollo sostenible, su conservación, restauración o sustitución.
Ley	1993	Ley 99	Ministerio de Ambiente y Desarrollo Sostenible	Art. 5 numeral 24 establece la responsabilidad del Ministerio del Medio Ambiente en la regulación de los recursos hídricos y de los ecosistemas con ellos relacionados. Ordenándole "regular las condiciones de conservación y manejo de ciénagas, pantanos, lagos, lagunas y demás ecosistemas hídricos continentales".
Ley	1994	Ley 165	Congreso de Colombia	Por medio de la cual se aprueba el "Convenio sobre la Diversidad Biológica", hecho en Río de Janeiro el 5 de junio de 1992. Esta ley responsabiliza al estado de la conservación de su diversidad biológica y de la utilización sostenible de sus recursos biológicos. Teniendo en cuenta que los humedales son reguladores de los regímenes hidrológicos y hábitat de una fauna y flora característica, especialmente de aves acuáticas, algunas migratorias, hace de estos un hábitat relevante

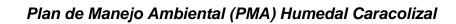
NORMA	AÑO	NOMBRE	INSTITUCIÓN	DESCRIPCIÓN
				importancia por su alta riqueza, diversidad biológica y servicios ecosistémicos para las comunidades locales.
Lineamiento	1995	Política para el Manejo Integral del Agua	Ministerio de Ambiente y Desarrollo Sostenible	El Ministerio de Ambiente elaboró el documento "Lineamientos para la construcción colectiva de una cultura del agua". Uno de sus objetivos es proteger acuíferos, humedales y otros reservorios importantes de agua.
Ley	1997	Ley 357	Congreso de Colombia	Por medio de la cual se aprueba la "Convención Relativa a los Humedales de Importancia Internacional Especialmente como Hábitat de Aves Acuáticas", suscrita en Ramsar el dos (2) de febrero de mil novecientos setenta y uno (1971). Esta Ley es la única norma que de manera específica y concreta impone obligaciones al Estado colombiano para la conservación y protección de los humedales, considerados en su acepción genérica.
Ley	1997	Ley 614		Por medio de la cual se adiciona la Ley 388 de 1997 y se crean los comités de integración territorial para la adopción de los planes

NORMA	AÑO	NOMBRE	INSTITUCIÓN	DESCRIPCIÓN
				de ordenamiento territorial. Los municipios y los distritos son los responsables de la elaboración de los planes y esquemas de ordenamiento territorial. Dichos planes deben, entre otras cosas, localizar las áreas con fines de conservación y recuperación paisajística e identificar los ecosistemas de importancia ambiental. También les corresponde clasificar los suelos en urbanos, rurales o de expansión. Dentro de cualquiera de estas tres clases puede existir lo que se define como suelo de protección.
Resolución	2002	Resolución VIII.14 RAMSAR	Convencion de RAMSAR	Por medio de la cual se establecen los nuevos lineamientos para la planificación del manejo de los sitios RAMSAR y otros humedales.
Resolución	2008	X. 31 RAMSAR	Convencion de RAMSAR	Por medio de la cual se establecen lineamientos para mejorar la Biodiversidad en los arrozales como sistemas de Humedales
Resolución	2004	Resolución 157	Ministerio de Ambiente y Desarrollo Sostenible	Por la cual se reglamenta el uso sostenible, conservación y manejo de los humedales, y se desarrollan aspectos referidos a los mismos en aplicación de la convención RAMSAR.

NORMA	AÑO	NOMBRE	INSTITUCIÓN	DESCRIPCIÓN
Resolución	2006	Resolución 196	Ministerio de Ambiente y Desarrollo Sostenible	Por la cual se adopta la guía técnica para la formulación de planes de manejo para humedales en Colombia.
Resolución	2006	Resolución 1128	Ministerio de Ambiente y Desarrollo Sostenible	Por el cual se modifica el artículo 12 de la resolución 157 de 2004 y se dictan otras disposiciones. Artículo 12. Aprobación del Plan de Manejo. El Plan de Manejo del Humedal elaborado con base en la guía técnica a que se refiere la presente Resolución, será aprobado por el Consejo o Junta Directiva de la respectiva autoridad ambiental competente.
Resolución	2016	377	CORTOLIMA	_

Fuente: GIZ, (2021).

o .


OBJETIVOS

Objetivo general:

Realizar el ajuste al Plan de Manejo Ambiental del humedal Caracolizal del municipio de Mariquita en el departamento del Tolima.

Objetivos específicos:

- Caracterizar la flora y fauna (lepidópteros diurnos, aves, herpetos, peces y mamíferos) del humedal.
- Identificar las especies de flora y fauna que se encuentren en alguna categoría de amenaza en el humedal.
- Realizar el estudio batimétrico y análisis del comportamiento de la lámina de agua del humedal objeto de estudio.
- Establecer los valores de uso en términos de servicios de los ecosistemas percibidos por los pobladores colindantes a las áreas del humedal.
- Precisar y ajustar las propuestas planteadas en el plan de manejo para la rehabilitación, conservación, protección y uso sostenible del humedal.

CAPITULO 1. LOCALIZACIÓN Y CLASIFICACIÓN

1. LOCALIZACIÓN Y CLASIFICACIÓN

1.1. UBICACIÓN GEOGRÁFICA

El humedal Caracolizal se encuentra Ubicado en la vereda Chimbi en el municipio de Melgar, vía Melgar – El Paso a 5.3 Km aproximadamente desde la cabecera municipal en el Departamento del Tolima, este pertenece a la subzona hidrográfica del río Sumapaz y las coordenadas de su ubicación son 4°12'3.213" N - 74°43'17.917" W a 317 msnm. La extensión aproximada a 2014 era de 10,97Ha, mientras que con el ajuste a 2021 el área del humedal comprende 5,81Ha (Tabla 1, Figura 1). Este humedal se encuentra situado en el predio colinda con los predios La Laguna (al norte), El Bosque – El Encanto, El Triángulo, El Lago, La Laguna (al sur) (Figura 2).

Tabla 1. Coordenadas geográficas humedal Caracolizal.

Extremo	NORTE	OESTE
Norte	4°12'14.81"	74°43'10.85''
Sur	4°11'53.71"	74°43'8.43''
Oriente	4°12'9.69''	74°43'4.01''
Occidente	4°12'4.10''	74°43'20.98''

Fuente: GIZ, (2014).

La ruta para llegar al humedal desde el casco urbano del municipio Melgar se escoge la ruta hacia la vereda el cruce, por la vía alterna hacia Carmen de Apicalá. Aproximadamente a 600 metros de la vereda el cruce, se encuentra el desvío hacia el humedal, en la vereda Chimbi.

Figura 1. . Límite sureste del Humedal Caracolizal (izquierda) y vegetación y estado actual del mismo (derecha).

Fuente: GIZ, (2021).

La laguna limita con alrededor de 12 predios privados los cuales se dedican a la actividad turística o son propiedad privada. En la Figura 2 se puede observar el humedal y la zona que define su microcuenca.

LOCALIZACIÓN HUMEDAL CARACOLIZAL

74'43'20"W

74'43'10"W

DEPARTAMENTO DEL
TOLIMA

MUNICIPIO DEI MELGAR

Figura 2. Localización del humedal Caracolizal y de su microcuenca.

Fuente: GIZ, (2021).

1.2. CLASIFICACIÓN Y CATEGORIZACIÓN DEL HUMEDAL

Teniendo en cuenta la Convención RAMSAR el humedal Caracolizal se clasifica según sus cinco niveles jerárquicos, basados en la Política Nacional para Humedales interiores de Colombia (2002):

SISTEMA JERÁRQUICO	CLASIFICACIÓN HUMEDAL
Ámbito: Es la naturaleza ecosistémica más amplia en su origen y funcionamiento	Interior
Sistema: Los humedales naturales se subdividen según la influencia de factores hidrológicos, geomorfológicos, químicos o biológicos. Los artificiales se separan con base en el proceso que los origina o mantiene.	Palustre
Subsistema: Los humedales naturales se subdividen dependiendo del patrón de circulación del agua.	Permanente
Clase: Se define con base en descriptores de la fisionomía del humedal, como formas de desarrollo dominantes o características del sustrato, tales como textura y granulometría en caso de no estar cubierto por plantas.	Emergente

SISTEMA JERÁRQUICO	CLASIFICACIÓN HUMEDAL
Subclase: Depende principalmente de aspectos biofísicos particulares de algunos sistemas o de la estructura y composición de las comunidades bióticas presentes.	Pantanos y ciénagas dulces permanentes

CAPITULO 2. COMPONENTE FÍSICO

2. COMPONENTE FÍSICO

Para el ajuste del PMA a 2021, el proceso de delimitación del área limítrofe del Humedal Caracolizal, contó con una fase de reconocimiento y recolección de información tomada en campo: Allí se definieron criterios para establecer áreas de frontera de los humedales tales como: zonas de amortiguamiento ante posibles elevaciones del nivel del agua en época húmeda; y la presencia de flora y fauna característica de estos ecosistemas. Para ello, se contó con instrumentos de toma de información geográfica como los Sistemas de Posicionamiento Global (GPS) con nivel de precisión de +/- 3 metros, y la implementación de los Sistemas de Información Geográfica (SIG) para su procesamiento y representación espacial.

En la Tabla 2, se describen aspectos geoespaciales generales establecidos en el proceso de definición y delimitación de área de influencia del humedal objeto de estudio.

Tabla 2 Características geoespaciales generales del Humedal Caracolizal.

Humedal	Área (Ha)	Perímetro (Km)	Extensión	
			Arriba: 4°12'14.27'' N	
Caracolizal	5.8	1.7	Izquierda: 74°43'20.80" W	Derecha: 74°43'10.19" W
			Abajo: 4°11'55.11" N	

Fuente: GIZ, (2021).

El levantamiento topográfico del terreno fue realizado con base al Modelo de Elevación Digital (MED) disponible en los repositorios de la Administración Nacional de Aeronáutica y el Espacio (NASA) en su programa de datos científicos de la tierra (EARTHDATA – Powered by EOSDIS), misión Alos Palsar (ASF – Alaska Satellite Facility) con corrección radiométrica a una resolución de 12.5 m. Esta información fue validada en campo a partir de puntos de control estratégicos en presencia de cambio abruptos en la topografía del terreno; y corregida por medio de técnicas de interpolación espacial.

Para la elaboración de la topografía se implementó la herramienta Spline (Regularizada), la cual es un método de interpolación espacial que ajusta una función matemática a una cantidad especificada de puntos de entrada más cercanos mientras pasa a través de los puntos de muestra, minimizado la curvatura general de la superficie. Esta herramienta es recomendada en superficies con cambios leves como la elevación o columnas de agua.

El algoritmo Spline viene dado por la siguiente expresión:

$$S(x,y) = T(x,y) + \sum_{j=1}^{N} \lambda_j R(r_j)$$
 $J = 1, 2, ..., N.$

Donde:

N: es el número de puntos

 λ_j : coeficientes estimados mediante la resolución de un sistema de ecuaciones lineales

 r_i : es la distancia desde el punto (x, y) al punto j

T(x,y) y R(r) parámetros definidos dependiente del criterio de minimización de las derivadas

Como resultado se construyó un Modelo Digital de Terreno (MDT) a resolución de 3 m representando la variabilidad altitudinal sobre la superficie del humedal el cual será insumo para el levantamiento de los perfiles topobatimétricos necesarios para el cálculo y análisis del balance hídrico tanto en época húmeda como seca (Figura 3).

74'43'20'W

74'43'10'W

74'43'10'W

74'43'10'W

74'43'10'W

74'43'10'W

74'43'10'W

74'43'10'W

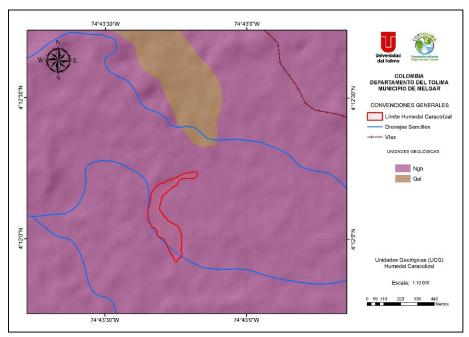
Figura 3. Modelo Digital de Terreno (MDT) para el Humedal Caracolizal.

Fuente: GIZ, (2021).

2.1. GEOMORFOLOGÍA Y SUELOS

Caracterizar la forma, composición litológica, propiedades físicas y geoquímicas de las rocas, permite reconocer y reconstruir secuencialmente eventos geológicos pasados para así entender la geología del terreno y su época de formación. La estratigrafía entendida como rama de la geología trata del estudio e interpretación tanto vertical como horizontal de las rocas estratificadas, su cartografía y correlación, determinando el orden cronológico de estos eventos.

En Colombia, el Servicio Geológico Colombiano (SGC) ha adelantado estudios geológicos a diferentes escalas caracterizando estratigráficamente el origen y formación de estos procesos geológicos que explican la evolución de la vida, la configuración de las placas tectónicas a través del tiempo y los cambios climáticos globales. Para el presente proyecto (2021) se abordaron los diferentes levantamientos cartográficos realizados por el Instituto de Investigación e Información Geocientífica, Minero – Ambiental y Nuclear (INGEOMINAS) a escala 1:100.000 los cuales abordan los principales rasgos estructurales, la localización de potenciales recursos mineros e identificación de posibles amenazas geológicas para las regiones.


El análisis a 2021 permite determinar que la formación geológica que constituye al Humedal Caracolizal está dada por (Figura 4):

- El Grupo Honda (Ngh) se presenta en forma de colinas bajas y onduladas descubiertos por procesos erosivos sobre abanicos y sedimentos. La morfología es levemente ondulada sin exposiciones de gran espesor dado los bajos buzamientos. Granulométricamente se pueden distinguir dos facies, una areno lodosa y otra areno conglomerática. Sedimentos fluviales provenientes de la Cordillera Central con basamento ígneo metamórfico. El tipo de sedimento depende de la actividad o inactividad de la fase tectónica o volcanismo presente; el ambiente de depósito es dominado por ríos meandriformes caracterizado por secuencias granodecrecientes con superficies erisivas (Wellman, 1970). Contacto superior discordante con depósitos cuaternarios, aluviones y terrazas aluviales; fauna reportada perteneciente al Oligoceno tardío y Mioceno (Stirton, 1953) y al Mioceno tardío (Wellman, 1970).
- Aluviones Recientes (Qal) asociados a ríos y quebradas drenantes compuestos por bloques, cantos. gravas, arenas, limos y arcillas proveniente de la socavación principalmente de rocas intrusivas, sedimentarias y del retrabajamiento de los abanicos del Guamo y Espinal. Alcanzan espesores de 1.5, 12 y 20 metros cerca del río Sumapaz.

Teniendo en cuenta que los suelos presentan diferentes características y propiedades morfológicas, físicas, químicas y biológicas dadas a partir de factores como el clima, material parental, organismos, relieve y tiempo de evolución. Estas características limitan el establecimiento de actividades económicas que al presentar variabilidad en la disposición de nutrientes y/o condiciones fisicoquímicas apropiadas, es necesario la implementación de prácticas de manejo.

Para conocer los diferentes tipos de suelo dominantes sobre este humedal, se tomó información del Estudio General de Suelos y Zonificación de Tierras del Departamento del Tolima a escala 1:100.000 realizado por el Instituto Geográfico Agustín Codazzi (IGAC) con el fin de delimitar cartográficamente las diferentes capacidades y usos de la tierra señalando el uso más apropiado del suelo, permitiendo un desarrollo sostenible en beneficio del medio ambiente.

Figura 4. Unidades geológicas presentes para el Humedal Caracolizal.

Fuente: GIZ, (2021).

Por lo tanto, el ajuste al PMA para el 2021 deje entrever que el humedal Caracolizal se caracteriza principalmente por los siguientes tipos de suelos (Figura 33):

- PWBd2: Relieve tipo colinas y vallecitos, fuertemente ondulado entre el 12 a 25% y erosión moderada. De material dominado por arcillolitas rojas y grises que alternan con areniscas tobáceas y conglomerados de matriz arcillosa. Vegetación natural en pastos para explotación de ganadería extensiva. Su capacidad de uso pertenece a la subclase IVte con suelos superficiales a moderadamente profundos, bien drenados y de fertilidad baja a moderada. Limitado por las pendientes dificultando la mecanización. Se recomienda incentivar la reforestación en conservando las áreas ribereñas de rios y afluentes, evitando el avance de procesos erosivos. Esta Unidad Cartografica representa una asociación conformada por suelos Typic Ustropepts (BT-81) en un 50%, Lithic Ustorthents (BT-83) en 35% y Typic Ustorthents (S/N) en 15%.
- PWLb: Tipo de relieve de vallecitos en clima cálido seco localizada en paisajes de piedemonte con relieves planos a ligeramente planos y pendientes entre el 3 a 7%. Se encuentra en zonas de vida del bosque seco tropical con altitudes inferiores a los 400 m.s.n.m., precipitaciones entre los 1000 a 1400 mm/año y temperaturas superiores a los 24 °C/año. Suelos derivados de sedimentos coluvio aluviales heterométricos. Suelos dedicados a ganadería semintensiva y cultivos de sorgo, máiz y algodón. Capacidad de uso IIIs con suelos moderadamente profundos, limitados por capas de piedras o por sodio en bajas cantidades; drenaje natural de bien drenados a imperfectamente drenados, susceptibles a inundaciones; y de baja fertilidad. Tierras fácilmente mecanizables aptas para cultivos de algodón, sorgo, ajonjolí, arroz, maíz, maní, frutales; y para ganadería con pastos mejorados. Requieren fertilizantes y residuos vegetales, rotación de cultivos y aplicación de riego. La unidad

cartográfica es un grupo indiferenciado conformado por Typic Ustifluvents (G-10) en un 50%, Vertic Haplustalfs (G-8) en 30% y Typic Ustipsamments (A-38) en 20%.

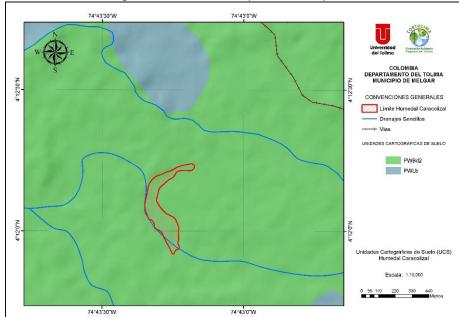


Figura 5. Unidades Cartográficas de Suelo presentes para el Humedal Caracolizal.

Fuente: GIZ, (2021).

2.2. CLIMA

El clima es un factor que determina la hidrología de los cuerpos de agua. Los humedales son más comunes en climas fríos y húmedos que en climas calientes y secos. Los climas fríos causan menores pérdidas de agua vía evaporación y evapotranspiración mientras los climas húmedos tienen precipitación en exceso. Los principales factores determinantes del clima son: la temperatura, la precipitación, la humedad relativa, la evaporación, la radiación solar y la velocidad del viento.

Precipitación: El promedio anual de precipitación ésta comprendido entre el rango de 1368 y 1778 mm. La precipitación total mensual multianual para la zona presenta un régimen de lluvias bimodal, que se caracteriza por dos épocas trimestrales de lluvias que se presentan en el primer semestre en los meses de Marzo, Abril y Mayo, y en los meses de Octubre, Noviembre y Diciembre para el segundo semestre, alternados con una época de baja precipitación que se presenta en los meses de Julio y Agosto, con algunos meses de transición como los son Enero, Febrero y Junio, en el primer semestre y Septiembre para el segundo semestre. La mayor precipitación promedio total en el primer semestre corresponde al mes de Marzo (219.6 mm), que equivale al 11.59% de ella, según los datos de la estación Hidroclimatológica La Granja en el Municipio de Melgar, con datos correspondientes al período 1987 – 2002.

Temperatura: La temperatura promedio anual de la zona es de 22.9°C.

Evapotranspiración Potencial: La evapotranspiración potencial para para la zona corresponde a 285.15 mm.

Humedad Relativa: la zona pose porcentajes de humedad moderado con un 12.95%.

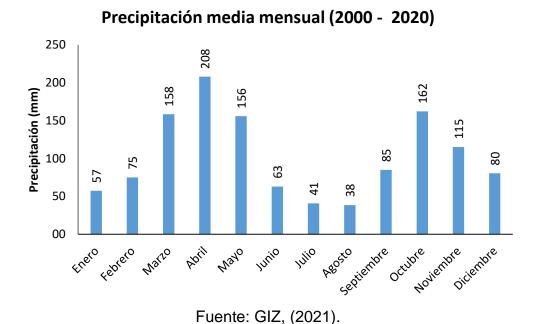
2.3. HIDROGRAFÍA

El humedal Caracolizal pertenece a la cuenca del rio Sumapaz, es alimentado desde el occidente por un pequeño cuerpo de agua permanente pero que no es identificado como quebrada alguna; sus aguas permanecen prácticamente estancadas y sumidas en la vegetación donde procesos de descomposición de la materia ocasionan algunos olores ligeramente perceptibles al nororiente del humedal.

2.4. HIDROLOGÍA

La evaluación del estado y dinámica hidrológica de ecosistemas húmedos proporciona elementos relevantes para su conservación y preservación, dada la importancia del recurso hídrico en el control de entornos biológicamente diversos, procesos hidrológicos superficiales y subterráneos, y la mitigación de efectos adversos del cambio climático. Con el desarrollo de estudios encaminados a evaluar la fluctuación hidrológica se pretende dar una perspectiva situacional del ecosistema, determinando las estrategias necesarias para garantizar su sostenibilidad a largo plazo.

El presente estudio proporciona una caracterización hidrológica para el humedal Caracolizal, ubicado en el municipio de Melgar del departamento del Tolima, evaluando el estado y la fluctuación dinámica de la lámina de agua a partir de un análisis topobatimétrico, determinando los balances hídricos a nivel mensual en condiciones de año hidrológico medio y en condición de año hidrológico húmedo. Con esto, se espera brindar una herramienta de planificación y de toma de decisiones por parte de la autoridad ambiental, buscando la preservación de la flora y fauna silvestre, importante para el equilibrio de estos ecosistemas.


En este documento, se presentan descripciones generales de localización y delimitación de cada humedal, así como una caracterización física describiendo la geología, tipo de suelo y cobertura de la tierra. Así mismo, muestran los balances hídricos a largo plazo estimados, curvas cota – volumen y cota – áreas establecidas, láminas de agua por condición hidrológica y la delimitación de la ronda hídrica.

2.4.1. Balance hídrico de largo plazo

En el 2021 se realizó un balance hídrico de largo plazo considerando la precipitación, evapotranspiración de referencia, evapotranspiración real, almacenamiento de agua en el suelo, y almacenamiento de agua en superficie con el fin de establecer el dominio hidráulico definido por la fluctuación de la lámina de agua. Este balance hídrico se calculó a nivel mensual en condición de año hidrológico medio y en condición del año hidrológico más húmedo observado en el periodo de análisis (2000 a 2020).

La información meteorológica se obtuvo de la red hidometeorológica de IDEAM al seleccionar los registros de la estación más cercana al humedal que satisface los criterios de completitud (menos de un 10% de datos faltantes), extensión de los registros (más de 20 años de registros en el periodo 2000 a 2020) y tipo de variables medidas (precipitación y temperatura), en este caso, la estación Aeropuerto Santiago Vila (código 21185040) cumple con los tres criterios. La precipitación presenta una distribución bimodal con menor pluviosidad durante agosto (38.5 mm) y mayor lluvia en abril (208.0 mm, Figura 6), la temperatura media tiene su valor más alto en el mes de septiembre (29.33°C) en contraste con la más baja observada en el mes de noviembre (27.9°C, Figura 7).

Figura 6. Precipitación media mensual multianual estación Aeropuerto Santiago Vila (21185040) en el periodo 2000-2020.

Figura 7. Precipitación media mensual multianual estación Aeropuerto Santiago Vila (21185040) en el periodo 2000-2020.

Mínima Máxima — Media 35 30 25 20 15 10 5 0 ABR FEB MAR MAY JUN JUL AGO SEP OCT DIC 23.42 23.67 23.41 23.42 23.31 22.57 22.52 23.11 23.45 23.42 23.4 23.22 Mínima Máxima 34.14 34.53 33.42 32.96 32.8 33.43 34.5 35.56 35.22 33.45 32.44 33.1 28.78 29.1 28.41 28.19 28.06 28.51 29.33 29.33 28.43 27.92 28.16 Media 28

Temperatura del aire (°C)

Fuente: GIZ, (2021).

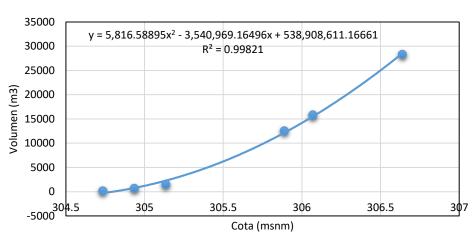
La Evapotranspiración de referencia (ETo) se calculó mediante el método de Turc y la Evapotranspiración real (ETr) se determinó aplicando un coeficiente de vegetación (Kc). El balance hídrico permite evidenciar que el mes de mayo presenta el mayor volumen de almacenamiento de agua en el humedal, representado en 798.7 litros por m2, y el mes con mayor reducción en agua superficial es febrero con un almacenamiento de 622.0 l/m2 (Tabla 2). El año más húmedo corresponde al 2016, en el cual se observa que el mayor almacenamiento superficial de agua ocurre en el mes de mayo con 1184.05 mm (Tabla 4).

Tabla 3. Balance Hídrico para el humedal Caracolizal (Melgar) en el periodo 2000 a 2020.

	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN
Precipitación (mm)	40.8	38.5	85.0	162.2	115.1	80.5	57.4	74.9	158.3	208.0	155.8	63.0
ETR (mm)	111.0	115.3	117.1	114.3	109.1	106.3	108.8	105.5	116.7	116.0	112.1	109.5
ET (mm)	99.9	103.8	105.4	102.8	98.2	95.6	97.9	94.9	105.0	104.4	100.9	98.6
Almacenamiento en Suelo (mm)	123.0	123.0	123.0	123.0	123.0	123.0	123.0	123.0	123.0	123.0	123.0	123.0
Almacenamiento Superficial (mm)	789.1	712.1	680.0	727.6	732.8	706.0	653.7	622.0	663.6	755.5	798.7	751.4
Déficit de agua (mm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Fuente: GIZ, (2021).

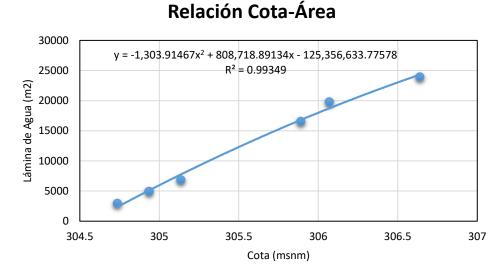
Tabla 4. Balance Hídrico para el humedal Caracolizal (Melgar) en el año más húmedo del periodo de análisis (2016).


	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN
Precipitación (mm)	74.8	66.4	38.1	286	148.3	202	19.2	123	101.8	406.9	238.2	75.6
ETR (mm)	111.04	115.33	117.13	114.26	109.06	106.26	108.78	105.47	116.71	116.03	112.11	109.51
ET (mm)	99.94	103.80	105.41	102.83	98.15	95.63	97.91	94.92	105.04	104.42	100.90	98.56
Almacenamiento en Suelo (mm)	123	123	123	123	123	123	123	123	123	123	123	123
Almacenamiento Superficial (mm)	680.16	631.06	552.05	723.52	761.97	856.64	766.23	782.61	767.67	1058.45	1184.05	1149.39
Déficit de agua (mm)	0	0	0	0	0	0	0	0	0	0	0	0

Fuente: GIZ, (2021).

2.4.2. Curvas Cota-Volumen y Cota-Área

Con el fin de establecer la relación batimétrica entre el nivel de la lámina de agua expresada como cota topográfica y el volumen de almacenamiento y el área de la superficie de la lámina de agua se trazaron 10 secciones transversales a partir del modelo de elevación digital generado, calculando iterativamente para diferentes niveles hipotéticos de agua el volumen y área de la lámina de agua correspondiente, en cada caso se aplicó un modelo polinómico de ajuste como se presenta a continuación (Figura 8, Figura 9):


Figura 8. Curva topobatimétrica cota-volumen del humedal Caracolizal (Melgar).

Relación Cota-Volumen

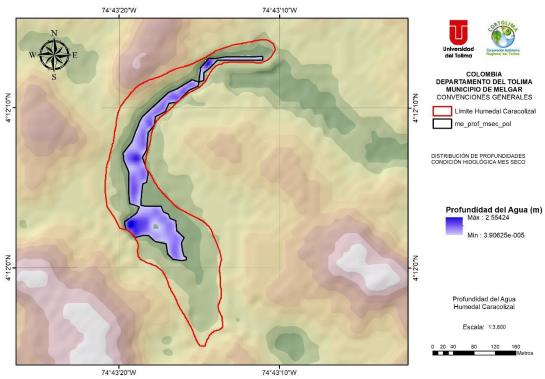
Fuente: GIZ, (2021)

Figura 9. Curva topobatimétrica cota-volumen del humedal Caracolizal (Melgar).

Fuente: GIZ, (2021)

2.4.3. Lámina de agua por condición hidrológica

Aplicando las anteriores relaciones, se identificaron los niveles de la lámina de agua (cota) correspondiente al almacenamiento superficial de interés (mes seco, mes húmedo y mes húmedo del año más húmedo), en este caso se obtuvieron las siguientes láminas de agua:


Tabla 5. Láminas de agua para las tres condiciones hidrológicas en el humedal Caracolizal (Melgar).

Condición Hidrológica	Cotas de Lámina de Agua (msnm)	Área de Lámina de agua (Ha)	Perímetro de Lámina de Agua (km)
Mes seco (promedios mensuales multianuales)	305.71	1.47	1.38
Mes húmedo (promedios mensuales multianuales)	306.07	1.97	1.39
Mes húmedo (año histórico más húmedo)	306.64	2.39	1.31

Fuente: GIZ, (2021)

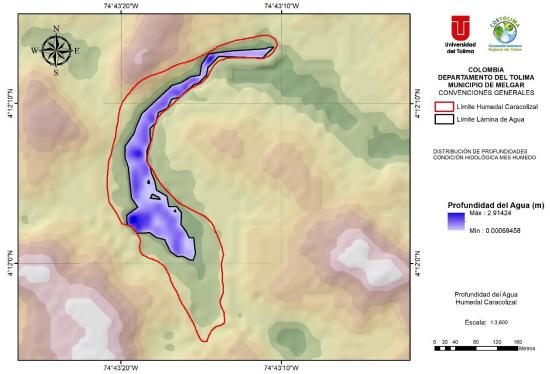

Para 2021 el humedal Caracolizal se caracteriza por contar con una permanente lámina de agua para tres condiciones hidrológicas (mes seco de año promedio, mes húmedo de año promedio y mes húmedo de año húmedo), cuya extensión es significativa en comparación con el límite geomorfológico del humedal.

Figura 10. Distribución espacial de la lámina de agua en mes seco de año promedio en Humedal Caracolizal (Melgar).

Fuente: GIZ, (2021)

Figura 11. Distribución espacial de la lámina de agua en mes húmedo de año promedio en Humedal Caracolizal (Melgar)

Fuente: GIZ, (2021)

TA'4320'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4320'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

TA'4310'W

Figura 12. Distribución espacial de la lámina de agua en mes húmedo de año más húmedo (2016) en Humedal Caracolizal (Melgar).

74'43'10'W

Fuente: GIZ, (2021)

Figura 13. Perfiles transversales en el mes más húmedo del año más húmedo (2016) en el humedal Caracolizal.

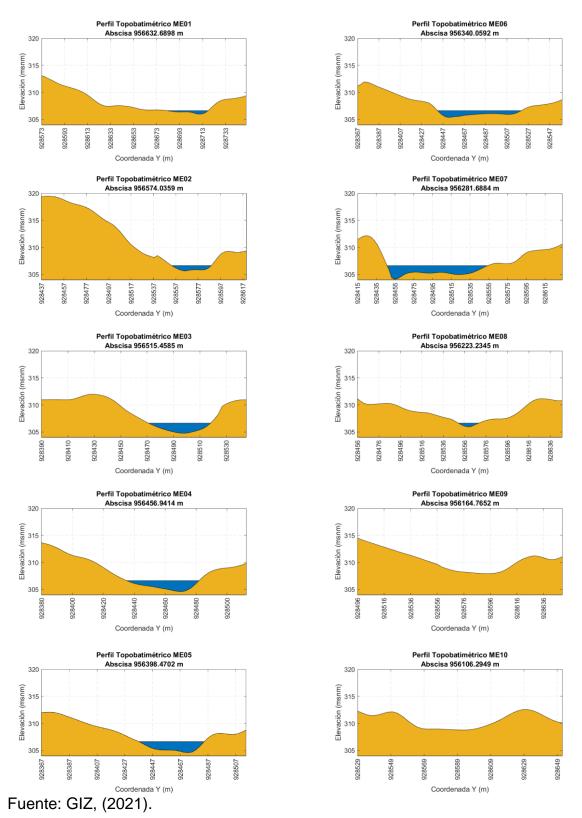


Figura 14. Perfiles transversales en el mes más húmedo del año promedio en el humedal Caracolizal.

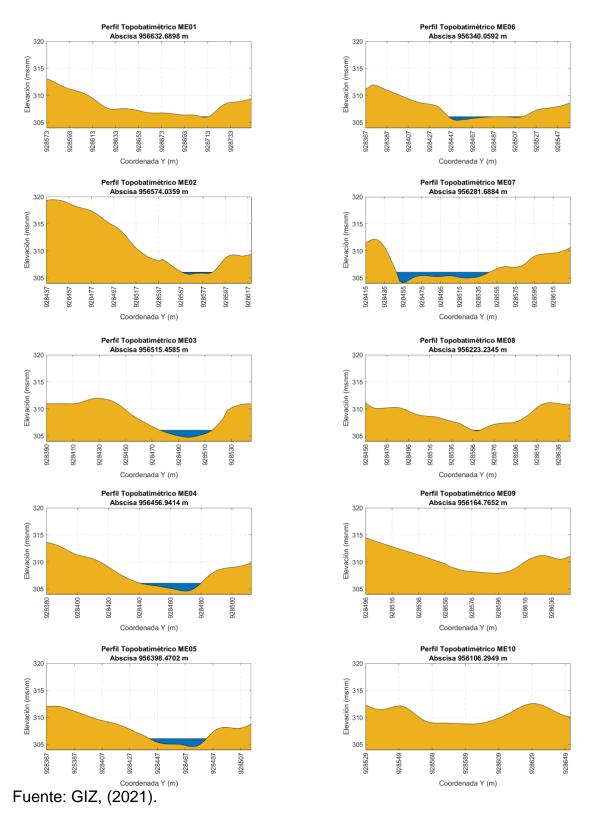
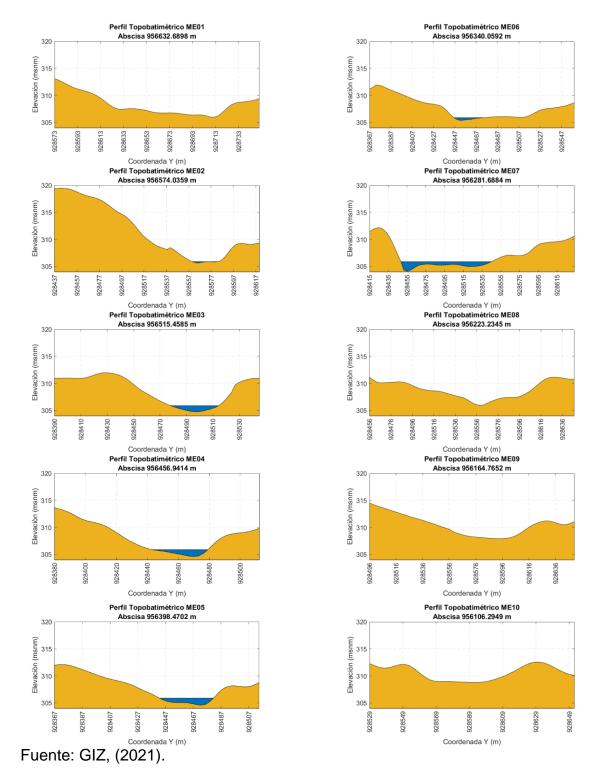



Figura 15. Perfiles transversales en el mes más seco del año promedio en el humedal Caracolizal

2.4.4. Rondas Hidraulica

Un humedal está constituido por el cuerpo de agua superficial, cuyo límite fluctúa según las condiciones hidrometeorológicas, y por áreas de transición, correspondientes a la ronda hidráulica y la zona de manejo y preservación ambiental. En este caso, la ronda hidráulica se definió como franja de 30 metros de ancho a partir del borde máximo de la lámina de agua sin exceder el límite geomorfológico del humedal, esta zona tiene como función la mitigación de riesgos, protección ambiental, y restauración ecológica, por lo que es fundamental para la estabilidad del ecosistema.

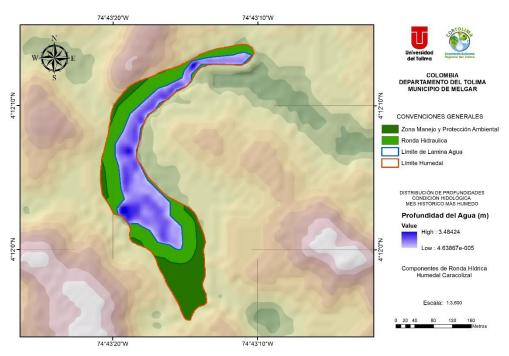

Por otro lado, la zona de manejo y preservación ambiental está definida como la franja de terreno de dominio público o privado adyacente a la ronda hidráulica, cuya función es el mantenimiento, protección, preservación y/o restauración ecológica del cuerpo de agua y ecosistemas aledaños, dicha zona se delimita entre la ronda hidráulica y el límite geomorfológico del humedal. De acuerdo con el componente hidráulico y geomorfológico, la ronda hídrica para el Humedal Caracolizal, en el año 2021 tiene unaa franja de nivel máximo de las aguas de 2.39 Ha, la franja de ronda hidráulica es 2.18 Ha, y la franja de manejo y preservación ambiental es 1.24 Ha, que representan un área total para el humedal de 5.81 Ha (Figura 16, Tabla 6)

Tabla 6. Parámetros geométricos de los componentes de la ronda hídrica del humedal Caracolizal (Melgar).

Componentes de la ronda hídrica del humedal	Área (Ha)	Perímetro (km)
Lamina Agua	2.39	1.31
Ronda hidráulica	2.18	2.81
ZMPA	1.24	1.28
Humedal	5.81	1.78

Fuente: GIZ (2021).

Figura 16. Mapa Final de Ronda hídrica.

Fuente: GIZ (2021).

CAPITULO 3. COMPONENTE BIÓTICO

3. COMPONENTE BIÓTICO

3.1. FLORA

3.1.1. MARCO TEÓRICO

3.1.1.1. Flora

La flora que se encuentra asociada al ecosistema de humedal es de gran importancia para el equilibrio y dinámica de ellos, teniendo en cuenta distintos factores. El primero de ellos es que influyen en la estructura trófica del sistema por ser productores primarios; haciendo que se aporte nutrientes, energía e influyen en el proceso de descomposición. En segundo lugar, juegan un rol de importancia en la sucesión ecológica (Arana & Salinas, 2003). Por otro lado, el humedal contribuye al crecimiento de las plantas acuáticas de todo tipo. Sin embargo, tiene efectos directos sobre las especies sumergidas con tendencia a la desaparición por el proceso de eutrofización originado por la actividad humana.

Por la importancia que tienen los humedales, el departamento del Tolima se une a la iniciativa de caracterizar la flora asociada a dichos ecosistemas, con el fin de conocer que especies se encuentran de manera predominante, cuantas especies endémicas existen y sobre todo conocer la diversidad, riqueza y abundancia.

Importancia de la flora de los humedales

Los ecosistemas de humedal, sostienen una importante relación entre las plantas y los cuerpos de agua en donde se encuentran asociados entre sí y adaptadas a estas condiciones particulares. Dichos ecosistemas controlan los cursos de las corrientes de agua, brindan hábitat a centenares de especies de flora y fauna, y participan en la regulación del ciclo del carbono (Ramírez et al., 2010).

Los humedales cumplen un importante rol en el ambiente como sumideros de carbono, teniendo en cuenta que la degradación de estos, libera grandes cantidades de dióxido de carbono contribuyendo así al aumento de la temperatura mundial (Palomino et al., 2007). Por lo anterior, la importancia de la vegetación asociada a dichos ecosistemas se da gracias al proceso de fotosíntesis, que se encarga de transformar la energía solar en química absorbiendo CO2 del aire para fijarlo en forma de biomasa, y libera a la atmósfera oxígeno molecular (O2) (Palomino et al., 2007). Estos ecosistemas requieren un manejo sostenible, impulsado por el desarrollo de la ciencia y la tecnología que permita descifrar su funcionamiento, con el fin de que se pueda llegar a estrategias de conservación eficientes (Rodríguez et al., 2017).

Flora asociada a humedales

La flora de los humedales tiene características específicas en cuanto a la fisionomía y paisajísticamente por contener especies y comunidades vegetales particulares,

que les otorga un aspecto especial en toda la época del año y se diferencia de la cubierta vegetal del entorno (Guitian y Rubinos., 2004).

La composición florística de los humedales es variada, se pueden encontrar géneros relacionados con el nivel altitudinal en el que se encuentran ubicados, como es el caso del bosque seco tropical en donde se van a encontrar ceibas, mangos yarumos, integrantes de la familia fabaceae. Géneros como Cespedesia, Pteris, Piper, Passiflora. Alrededor se pueden encontrar diferentes géneros de la familia Poaceae como Paspalum y de la familia ciperácea, además de las platas flotantes. Vale la pena resaltar que a la diversidad biológica de los humedales se deben sumar otros grupos como insectos, fitoplancton y zooplancton; invertebrados acuáticos y terrestres, hongos y bacterias (Castellanos et al., 2015; Cardona et al., 2012; Mora et al., 2019).

Plantas macrófitas

Las plantas macrófitas son un tipo de vegetación acuática que puede localizarse en flotación o adherida a los fondos. Dichas plantas pueden tener una influencia positiva en cuanto a la purificación del agua y una negativa al invadir el cuerpo de agua evitando que la vida de otros organismos allí presentes se desarrolle óptimamente (Montoya et al., 2010).

Las macrófitas agrupan diferentes grupos de plantas vasculares- angiospermas y pteridofitas-, algas filamentosas, briofitos, algunas monocotiledóneas y dicotiledóneas. La distribución de estas va a depender de factores como el clima, condiciones geológicas, hídricas y topografía son fundamentales para determinar la distribución de las macrófitas. Su colonización va a depender de la abundancia de rizomas, desarrollo clonal y mecanismos de dispersión (Kiersch et al, 2004). Dentro de las especies que predominan se encuentran echuga de agua (Pistia stratiotes), el jacinto de agua (Eichhornia crassipes) y la salvinia (Salvinia Spp.). Así mismo, la redondita de agua (Hydrocotyle ranunculoides), y ciertas especies de lentejas de agua (Spirodella Spp. y Lemna Spp.) (Caviedes et al., 2016).

Flora del bosque seco tropical (bs-T)

El bs-T se ubica en la región del neotrópico, la cual presenta la mayor biodiversidad de plantas en el mundo. Sin embargo, la diversidad del bosque seco tropical se ve amenaza debido a las diferentes actividades agrícolas y ganaderas (Fajardo et al., 2020). Diferentes investigadores, afirman que un 97% de este ecosistema se encuentra en peligro de destrucción; y a pesar de sus altos niveles de endemismo y diversidad florística se encuentran mal protegidos (Pennington et al., 2006; Linares et al., 2009).

El bs-T corresponde a la formación vegetal que se encuentra entre los 0 y los 1000 m de altitud, se caracteriza por presentar una vegetación que incluye árboles de hoja caduca (por lo menos el 50% de los árboles presentes son de hoja caduca en sequía), presenta una temperatura de 25°C aproximadamente con una precipitación anual que varía entres700 y 2000 mm. Estos ecosistemas representan el 42% de los biomas secos del mundo (Carrillo et al., 2007; Olascuaga-Vargas et al., 2016).

Para el conocimiento de la composición, estructura y dinámica del bs-T, es necesario la caracterización de las comunidades vegetales, para entender cómo deben ser llevados a cabo los planes de restauración y reforestación para su regeneración, teniendo en cuenta que su importancia radica en su diversidad, que refleja una gran variedad de adaptaciones e interacciones de las plantas para afrontar el déficit hídrico y las altas temperaturas (Lemos et al., 2015).

3.1.2. METODOLOGÍA

3.1.2.1. Flora

Métodos de campo. La colecta del material biológico se realizó mediante el uso de la técnica propuesta por Villareal et al. (2004), RAP (Rapid Assessment Program). En dicha técnica, se trazó un perímetro de 50 x 2 metros, teniendo presente a los individuos con DAP (Diámetro a la Altura del Pecho) ≥ 1 cm a lo largo, Altura total, altura del fuste, diámetro de la copa y observaciones generales. Se colectaron muestras botánicas provenientes de especies herbáceas, arbustivas y leñosas presentes. A cada muestra tomada se les realizó su respectiva descripción morfológica y registro fotográfico (Figura 17). Para la preservación de las muestras de material vegetal se realizó la técnica de prensa con base preservarte de alcohol al 75% propuesto por Esquivel (1997), lo que permitió su transporte hasta el Herbario Toli de la Universidad del Tolima (Figura 18).

Figura 17. Metodología de colecta de muestras en el Humedal Caracolizal (Melgar, Tolima).

Fuente: Grupo de Investigación en Zoología (GIZ, 2021).

Métodos de laboratorio. Las muestras fueron trasladadas al laboratorio de Dendrología de la Universidad de Tolima (Figura 18), donde fueron extraídas de la prensa de conservación y secadas en horno a 70°c durante 24 horas. Una vez secas se caracterizaron y determinaron taxonómicamente por medio de claves botánicas (Gentry, 1993; Vargas, 2002), consultas con expertos y bases de datos de herbarios digitales, catálogo de planta de Colombia y libros.

Se escogieron muestras fértiles (aquellas con presencias de flores, frutos e inflorescencias) para ingreso al herbario Toli de la Universidad del Tolima).

Figura 18. Conservación de muestras en campo y secado de muestras en el

laboratorio de dendrología de la Universidad del Tolima.

Fuente: Grupo de Investigación en Zoología (GIZ, 2021).

Análisis de datos

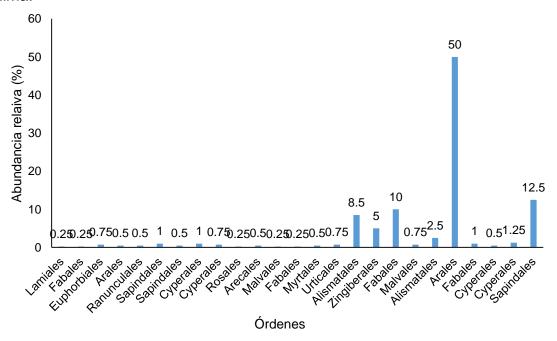
Información secundaria. La búsqueda de información secundaria se realizó en diferentes fuentes de información como Science Direct, EBSCO, Proquest, Agris, Springer y Google académico, plant List, Herbario virtual de la universidad Nacional y Catalogo de plantas de Colombia, empleando las palabras clave: flora, bosque tropical, bosque seco, bosque húmedo. Para la búsqueda de material bibliográfico en inglés se emplearon marcadores booleanos (e.g., or, not, and).

Representatividad del muestreo. Con el fin de determinar la representatividad del muestreo, fue calculada la composición general y las de las dos estaciones de manera independiente. Por su parte, la abundancia relativa se determinó a partir del número de individuos colectados de cada familia y su relación con el número total de individuos de la muestra. Este fue calculado con el fin de determinar la importancia y proporción en la cual se encuentra cada una de las familias con respecto a la comunidad vegetal en las dos localidades.

AR= No de individuos de cada especie en la muestra x 100 Nº total de individuos en la muestra

Categorías ecológicas, endemismos y usos de las especias vegetales encontradas. Se incluyeron las categorías ecológicas de las especies

determinadas, si están bajo algún grado de amenaza, si son endémicas, si representan algún tipo de uso en las regiones.


3.1.3. RESULTADOS

3.1.3.1. Flora asociada al humedal

A 2021 en el Humedal Caracolizal (Melgar) se observó un cuerpo de agua pequeño, con presencia de plantas acuáticas dentro de las que predomina la lenteja de agua *Lemna minor L.* Alrededor del humedal había presencia de la flora típica de bosque seco tropical.

El orden con mayor abundancia relativa fue arales (50 %), seguido del orden Sapindales (12.5 %) y Fabales (10 %). Por el contrario, los órdenes menos abundantes fueron Lamiales, Fabales, Rosales y Malvales con (0.25 %) (Figura 19, Anexo A).

Figura 19. Muestreo de flora en el Humedal Caracolizal, municipio de Saldaña Tolima.

Se colectaron 25 organismos vegetales distribuidos en un filo, 2 clases, 14 órdenes, 19 familias, 25 géneros y 19 especies (Tabla 7). La familia Lemnaceae fue la más abundante con la especie *Lemna minor* (50 %), seguida de la familia Rutaceae con la especie *Citrus limón* (12.5 %) y familia *Mimosaceae con la especie Mimosa pellita* (10 %). Dicho resultado muestra que, aunque hay un pequeño cuerpo de agua, hay presencia de especies macrófitas. La menos abundantes fueron la familia Bignoniaceae con la especie *Crescentia cujete*, familia Fabaceae con el género *Pithecellobium sp.*, familia Moraceae con la especie *Brosimum utile*, familia

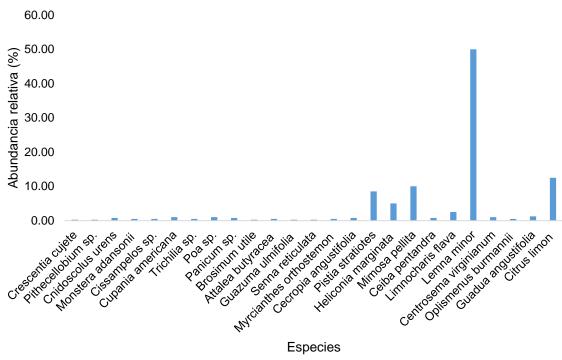

Stercualiaceae con la especie *Guazuma ulmifolia*, familia Fabaceae con la especia *Senna reticulata* y la familia Alismataceae *Limnocharis flava* con (0.25 %) (Tabla 7).

Tabla 7. Composición taxonómica de la vegetación presente en el Humedal Caracolizal, Municipio de Melgar (Tolima).

Familia	Nombre científico	%AR	Usos	
Bignoniaceae	Crescentia cujete	0,25	Comercial y artesanías	
Fabaceae	Pithecellobium sp.	0,25	Forraje, sombrío.	
Euphorbiaceae	Cnidoscolus urens	0,75	Ornamental	
Araceae	Monstera	0,5	Ornamental	
	adansonii			
Menispermaceae	Cissampelos sp.	0,5	Ornamental	
Sapindaceae	Cupania	1	Árbol maderable, alimento para fauna, fabricación de postes,	
	americana		edificios institucionales	
Meliaceae	Trichilia sp.	0,5	Maderable	
Poaceae	Poa sp.	1	Forraje	
Poaceae	Panicum sp.	0,75	Forraje	
Moracea	Brosimum utile	0,25	Maderable	
Arecaceae	Attalea	0,5	Alimenticio, artesanías, productos de aseo	
	butyracea			
Sterculiaceae	Guazuma	0,25	Maderable, medicinal	
	ulmifolia			
Fabaceae	Senna reticulata	0,25	Medicinal	
Myrtaceae	Myrcianthes	0,5	Maderable	
	orthostemon			
Urticaceae	Cecropia	0,75	Comestible, medicinal, forraje para ganado	
	angustifolia			
Araceae	Pistia stratiotes	8,5	Ornamental	
Heliconiaceae	Heliconia	5	Ornamental	
	marginata			
Mimosaceae	Mimosa pellita	10	Medicinal	
Malvaceae	Ceiba pentandra	0,75	Ornamental, de importancia económica y uso medicinal	
Alismataceae	Limnocharis flava	2,5	Ornamental y gastronomía	
Lemnaceae	Lemna minor	50	Ornamental	
Fabaceae	Centrosema	1	Medicinal. Usada para curar problemas estomacales	
	virginianum			
Poaceae	Oplismenus	0,5	Forraje	
	burmannii			
Poaceae	Guadua	1,25	Para la construcción	
	angustifolia			
Rutaceae	Citrus limon	12,5	Comestible. Cultivo comercial.	

Fuente: GIZ, 2021.

La especie más abundante fue la *Lemna minor* (50 %), seguida de *Citrus limon* (12.5 %) y *Mimosa pellita* (10 %). En el Humedal hay presencia de un pequeño cuerpo de agua en donde se puede observar la presencia de distintas especies de plantas acuáticas flotantes, dominada por la especie *Lemna minor* (lenteja de agua). Las especies menos abundantes fueron *Crescentia cujete, Pithecellobium sp, Brosimum utile*, *Guazuma ulmifolia, Senna reticulata y Limnocharis flava* con (0.25 %) (Figura 20).

Figura 20. Abundancia relativa de las especies de las plantas colectadas en el humedal Caracolizal- Melgar(Tolima).

Fuente: GIZ, 2021

En el Humedal Caracolizal se colectaron 25 plantas, de las cuales 3 especies macrófitas contribuye en la purificación del agua, 3 se ubican como especies protectoras del suelo, 5 especies maderables para la construcción de viviendas y postes, 5 especies como alimento para mamíferos y avifauna, 4 especies medicinales. Por lo anterior, se hace urgentes estrategias de conservación para preservar lo que queda del bs-T y en especial las especies que se encuentran alrededor y sobre el ecosistema de humedal que proporcionan un hábitat importante para diversas especies.

Especies en categoría UICN. Para la vegetación del humedal Caracolizal, 5 especies se encuentran en categoría de la IUCN como Preocupación menor (LC), 3 poseen datos insuficientes (DD) y 8 especies no se encuentran evaluadas (NE).

Comparación de especies colectadas en el humedal Caracolizal entre el Plan de Manejo Ambiental (PMA) de 2021 y el PMA de 2014.

RIQUEZA DE FLORA DEL HUMEDAL CARACOLIZAL- MELGAR -TOLIMA			
PMA 2021 PMA 2014			
Attalea butyracea	Aiphanes aculeata		
Brosimum utile	Albizia guachapele		
	Anacardium		
Cecropia angustifolia	excelsum		

RIQUEZA DE FLORA DEL HUMEDAL CARACOLIZAL- MELGAR -TOLIMA		
PMA 2021	PMA 2014	
Ceiba pentandra	Annona muricata	
Centrosema virginianum	Annona squamosa	
Cissampelos sp.	Attalea butyracea	
Citrus limon	Capsicum annuum	
Cnidoscolus urens	Cassia sp.	
Crescentia cujete	Cedrela odorata	
Cupania americana	Ceiba pentandra	
Guadua angustifolia	Dieffenbachia sp.	
Guazuma ulmifolia	Dioscorea sp.	
Heliconia marginata	Ficus sp.	
Lemna minor	Fittonia albivenis	
Limnocharis flava	Genipa americana	
Mimosa pellita	Guadua angustifolia	
Monstera adansonii	Guadua sp.	
Myrcianthes orthostemon	Guarea guidonia	
Oplismenus burmannii	Guazuma ulmifolia	
Panicum sp.	Heliconia hirsuta	
Pistia stratiotes	Heliconia sp.	
Pithecellobium sp.	Lemna minor	
Poa sp.	Maclura tinctoria	
Senna reticulata	Monstera sp.	
Trichilia sp.	Murraya paniculata	
	<i>Myrcia</i> sp.	
	Myrcianthes sp.	
	Oplismenus	
	burmannii	
	Paullinia macrophylla	
	Piper asterotrichum	
	Pistia stratiotes	
Géneros y Especies	Pouteria lucuma	
comunes en los dos	Psidium guajava	
muestreos	Ricinus communis	
	Samanea saman	
	Senna sp.	
	Trichilia sp.	
	Triplaris americana	
	<i>Typh</i> a sp.	
	Vitex sp.	
	Zanthoxylum sp.	

RIQUEZA DE FLORA DEL HUMEDAL CARACOLIZAL- MELGAR -TOLIMA		
PMA 2021	PMA 2014	
	Zygia longifolia	

Conclusión

La flora a 2021 en El Humedal Caracolizal presenta un estado de conservación aceptable, exhibe un cuerpo de agua pequeño con presencia de plantas macrófitas que contribuyen a la limpieza del ecosistema, cumpliendo su función biológica. Vale la pena resaltar que se requieren estrategias de manejo ambiental para que el cuerpo de agua presente no desaparezca. Se observó que es un sector intervenido por los cultivos de limón por lo que se hace necesario su conservación oportuna.

3.2. FAUNA

3.2.1. MARCO TEÓRICO

3.2.1.1. Macroinvertebrados

Dentro del grupo de los macroinvertebrados acuáticos pueden considerarse a todos aquellos organismos con tamaños superiores a 0.5 mm y que por lo tanto se pueden observar a simple vista, de esta manera, se pueden encontrar poríferos, hidrozoos, turbelarios, oligoquetos, hirudíneos, insectos, arácnidos, crustáceos, gasterópodos y bivalvos. El Phyllum Arthropoda representa el grupo más abundante, dentro del cual se encuentra las clases Crustácea, Insecta y Arachnoidea (Roldán & Ramírez, 2008).

En ecosistemas lénticos, como lagos, charcas, represas y humedales, los macroinvertebrados pueden estar asociados tanto a las zonas de litoral como a la limnética y la profunda, en las que la mayor diversidad se encuentra hacia las zonas de litoral debido a la presencia de vegetación acuática (que favorece su desarrollo), mientras en la zona limnética, es decir de aguas abiertas unas pocas especies de macroinvertebrados flotantes pueden vivir y finalmente en la zona profunda una diversidad menor con especies abundantes (Roldán & Ramírez, 2008).

Los grupos de macroinvertebrados de aguas dulce presentan una gran variedad de adaptaciones, las cuales incluyen diferencias en sus ciclos de vida. Algunos macroinvertebrados desarrollan su ciclo de vida completo en el agua y otros sólo una parte de él, además el tiempo de desarrollo es altamente variable (depende de la especie y los factores ambientales), algunos con varias generaciones al año (multivoltinos) principalmente en la región tropical, otros con una generación (univoltinos) y una o dos generaciones (semivoltinos) (Hanson et al. 2010).

Papel de la comunidad bentónica en la dinámica de los nutrientes: En cuanto a su papel ecológico, los macroinvertebrados se constituyen en el enlace para mover la energía hacia diferentes niveles de las cadenas tróficas acuáticas, por lo tanto controlan la productividad primaria ya que con el consumo de algas y otros organismos asociados al perifiton y el plancton (Hanson et al. 2010).

La materia orgánica que se va depositando en el fondo de lagos y ríos entra en proceso de descomposición durante el cual se liberan los nutrientes, los que deben regresar al cuerpo de agua para continuar así el ciclo de producción. En este paso los organismos bentónicos desempeñan un papel importante en la remoción de estos nutrientes. Muchos de ellos, que viven sobre el fondo o enterrados en él en su proceso de movimiento para buscar alimento, oxígeno y protección, remueven los sedimentos, ayudando de esta manera a liberar los nutrientes allí atrapados (Roldán & Ramírez, 2008).

Los macroinvertebrados acuáticos y su uso como bioindicadores de la calidad del agua: El uso de los macroinvertebrados acuáticos como indicadores de la

calidad de las aguas de los ecosistemas lóticos y lénticos (ríos, lagos o humedales) está generalizándose en todo el mundo (Prat et al. 2009). Su uso se basa en el hecho de que dichos organismos ocupan un hábitat a cuyas exigencias ambientales están adaptados. Cualquier cambio en las condiciones ambientales se reflejará, por tanto, en las estructuras de las comunidades que allí habitan. Un río que ha sufrido los efectos de la contaminación es el mejor ejemplo para ilustrar los cambios que suceden en las estructuras de los ensambles, las cuales cambian de complejas y diversas con organismos propios de aguas limpias, a simples y de baja diversidad con organismos propios de aguas contaminadas. La cantidad de oxígeno disuelto, el grado de acidez o basicidad (pH), la temperatura y la cantidad de iones disueltos (conductividad) son a menudo las variables a las cuales son más sensibles los organismos. Dichas variables cambian fácilmente por contaminación industrial y doméstica (Roldán & Ramírez, 2008).

3.2.1.2. Lepidopteros

En la clasificación taxonómica las mariposas se encuentran dentro del orden Lepidoptera, que quiere decir alas con escamas (lepidos—escama, pteron- ala). Sin embargo, este no es el único carácter que las define, aunque sí el más conspicuo (Kristensen et al., 2007; Llorente et al., 2014).

Lepidoptera se clasifica dentro del filo Artropoda, subfilo Hexapoda, clase Insecta, subclase Pterigota y superorden Endopterigota, cuyas características principales son presentar exoesqueleto quitinoso, apéndices articulados, tener una organización corporal característica con cabeza, tórax y abdomen, tres pares de apéndices torácicos, un par de antenas, tres grupos de mandíbulas (mandíbulas, maxilas y labio), frecuentemente dos pares de alas que se desarrollan internamente y una metamorfosis completa (holometábolos) (Brusca y Brusca, 2005; Díaz y Santos,1998; Flórez et al., 2015; Padilla y Cuesta, 2003).

Las mariposas además de cumplir un importante rol en la polinización y en la cadena trófica (Ghazanfar et al., 2016; Ospina, 2014), tienen altas tasas de reproducción y se encuentran en un nivel trófico bajo, debido a esto, responden rápidamente al impacto ambiental, incluida la fragmentación, la modificación del hábitat, la alteración ecológica, el cambio climático y la contaminación química, por lo tanto, el inventario de sus comunidades a través de medidas de diversidad y riqueza representan una herramienta válida para evaluar el estado de conservación o alteración del medio natural (Kremen et al., 1993; Oostermeijer y van Swaay, 1998). El legado natural sobre el cual se construye hoy Colombia, lo caracterizan como uno de los países neotropicales más diversos, exhibiendo el 10% de la biodiversidad mundial, con un registro de 3642 especies de mariposas diurnas, lo que equivale al 19.4% de todas las especies de mariposas del planeta, de las cuales 350 son endémicas, catalogándose como el país con más especies de mariposas en el mundo (Andrade, 2002; SIB, 2021; Garwood et al., 2021).

Sin embargo, esta diversidad se ha visto opacada por la deforestación, actividades ganaderas y agrícolas, el aumento de la urbanización, la contaminación

atmosférica, turismo, entre otros factores (Andrade, 2011), afectando de esta manera la conectividad y el flujo genético entre las diferentes poblaciones de mariposas, como también generando algunas extinciones locales (Mahecha et al., 2011).

Es el caso de los humedales, los cuales se están viendo afectados por la fragmentación de estos hábitats, generando una reducción de espacios para el flujo genético entre las poblaciones de las diferentes especies de flora y fauna, ocasionando posibles cuellos de botella y extinciones locales (Murillo et al., 2018). Por lo anterior, se hace necesario conocer la diversidad de lepidópteros diurnos presente en estos sitios, con el fin de contribuir en acciones que protejan la biodiversidad local y minimicen la pérdida de estos ecosistemas naturales.

3.2.1.3. Ictiofauna

Colombia posee una enorme diversidad de especies ícticas, en total 1610, convirtiéndolo en uno de los cinco países con mayor diversidad de peces en el mundo, en cuanto a las regiones hidrográficas, el Amazonas es la más diversa con 775 especies, seguida del Orinoco con 728 especies, en su orden le siguen Magdalena-Cauca con 233, Caribe con 231 y Pacífico con 128 (DoNascimiento et al., 2018).

Respecto a la diversidad de peces del departamento del Tolima, algunos de los principales estudios ícticos han evaluado aspectos de diversidad, composición, ecología trófica y reproductiva de las especies de Trichomycteridae, Characidae, Sternopygidae, Cichlidae, Astroblepidae y Loricariidae (García-Melo, 2005; Villa-Navarro y Losada-Prado, 1999; Villa-Navarro y Losada-Prado, 2004; Briñez-Vásquez et al., 2005; Zuñiga-Upegui et al., 2005; Castro-Roa, 2006).

Por otra parte, se destacan estudios en los cuales fue evaluada la diversidad, distribución y aspectos ecológicos de las especies de los órdenes Characiformes y Siluriformes, la mayoría de los resultados obtenidos en ellos, concuerdan con que la distribución de las especies parece estar relacionada con factores altitudinales y cambios en las variables fisicoquímicas (García-Melo, 2005; Zuñiga-Upegui et al. 2005; Castro-Roa, 2006; Briñez-Vásquez, 2004; López-Delgado, 2013; Albornoz-Garzón y Conde-Saldaña, 2014; Montoya-Ospina et al., 2018).

La diversidad de especies ícticas se encuentra determinada por diferentes factores, entre los que se encuentran, alteraciones hidrológicas, temperatura del agua, altitud (Anderson y Maldonado-Ocampo, 2010). La altitud es una de las variables que tiene más influencia sobre las comunidades de peces, se correlaciona frecuentemente con cambios en la diversidad, así, el número de especies aumenta a medida que disminuye la altitud, posiblemente debido a la mayor disponibilidad de nichos ecológicos y una mayor cantidad de nutrientes en las zonas bajas (Cassatti et al. 2012).

La deforestación de los bosques de ribera, la pérdida de los cuerpos de agua por contaminación, la introducción de especies exóticas y el desarrollo de hidroeléctricas (Anderson y Maldonado-Ocampo, 2010), son factores responsables de la vulnerabilidad de muchas especies ícticas en el país.

3.2.1.4. Herpetofauna

Dentro de la herpetofauna se ubican aquellos organismos reptantes, incluyendo anfibios y reptiles, los cuales de acuerdo a sus características metabólicas e historia evolutiva se encuentran altamente relacionados entre sí, compartiendo no sólo hábitats sino aspectos comportamentales y alimenticios muy parecidos (Rodríguez et al., 2009).

En Colombia, estos grupos constituyen el 2,73% de la diversidad del país, encontrándose reportadas 851 especies de anfibios (Acosta-Galvis, 2021; SiB, 2021) y 743 de reptiles (SiB, 2021), constituyendo además uno de los grupos más amenazados por la pérdida de hábitat y el comercio de especies (Morales-Betancourt et al., 2015). Por ejemplo, en el caso de los anfibios, para el año 2021 se ha reportado que 53 especies se encuentran consignadas dentro de alguna de las categorías de riesgo existentes en la IUCN (13 especies en peligro crítico, 25 especies en peligro y 15 especies vulnerables), estimándose además que 39 especies son objeto de comercio y se encuentran acogidas dentro de los apéndices de la Convención sobre Comercio Internacional de Especies (CITES) (SiB, 2021).

Respecto a los reptiles, pese a que el país, se posiciona como el tercero más diverso en relación con este grupo, desde principios de siglo se ha observado un declive drástico en sus poblaciones —especialmente de tortugas y crocodílidos-, de manera que más de un 9% se encuentran amenazadas de extinción y 20% de especies que no cuentan con datos suficientes para ser categorizadas adecuadamente (Morales-Betancourt *et al.*, 2015). En este sentido, para este año se ha estimado que 44 de las especies registradas en el país se encuentran amenazadas (diez en peligro críticos, 16 en peligro y 15 vulnerables) y 40 son objeto de comercio por lo cual se contemplan dentro de los apéndices del CITES (8 en el apéndice I, 29 en el apéndice II, y dos en el apéndice III) (SiB, 2021).

Generalidades Clase Amphibia. Los anfibios se caracterizan por presentar dos o más etapas en su vida, una ligada al agua y otra a la tierra. En su mayoría exhiben una metamorfosis completa en la cual los huevos son dispuestos en el agua o en ambientes húmedos para luego al pasar por una serie de cambios embrionales hasta llegar a la etapa adulta o reproductiva (Vargas y Castro, 1999).

En general, los individuos presentan una etapa de huevo seguida por una larval durante la cual cuenta con capacidad natatoria y branquial para filtrar el oxígeno disuelto en el agua. Tras modificar su respiración por una pulmonar (relativamente ineficaz en comparación con la de otros vertebrados terrestres) y sus hábitos alimenticios de filtradores a predadores, los organismos sufren cambios anatómicos que implican no solo la aparición de estructuras motrices predispuestas a la tierra

sino la pérdida de su capacidad natatoria en algunos casos (Vargas y Castro, 1999). Sin embargo, algunos organismos no presentan un estado de metamorfosis, como el caso de la familia Craugastoridae, o conservan sus branquias y estructuras natatorias durante toda la vida como el axolote (Ambystoma mexicanum) (Angulo *et al.*, 2006).

Así mismo, los anfibios se agrupan en tres órdenes taxonómicos: Anura (ranas o sapos), Urodela (salamandras) y Apoda (cecilias), los cuales presentan piel siempre húmeda, así como respiración cutánea mediada por gandulas en la piel, lo cual en algunos casos les brinda la capacidad de exudar sustancias toxicas como método de defensa. Además, poseen un corazón tricameral en su estado adulto (las larvas poseen dos), una cola muy poco desarrollada o carecen por completo de ella, fertilización externa o interna (dependiente de la especie), los machos son generalmente más pequeños que las hembras y pueden o no tener cuidado parental (Heyer et al., 1994).

Diversidad de anfibios. A la fecha se registran cerca de 7800 especies de anfibios en el mundo, representadas principal mente por el orden Anura (~6870 especies), seguido por Caudata (~720 especies) y Gymnophiona (~210 especies). En Colombia, se han descrito 791 especies de ranas, 27 de salamandras y 33 de apodos, por lo cual ocupa el segundo puesto a nivel mundial en diversidad de anfibios a nivel mundial después de Brasil (Urbina-Cardona y Cáceres-Andrade, 2009).

Generalidades Clase Reptiles. Este grupo se caracteriza principalmente por presentar escamas protectoras alrededor de su cuerpo, no presentan metamorfosis, ser ovíparos y en determinados casos ser partenogénicos, (Angulo *et al.*, 2006). Además, son organismos pulmonados, tricamerales (tetracamerales en el caso de los cocodrilos), los cuales presentan reproducción interna y pueden tener o no cuidado parental. Cuentan con dientes, garras, colmillos y en algunos casos desarrollan sustancias toxicas empleadas por los individuos con fines de protección y caza (Angulo *et al.*, 2006).

La clase se divide en cinco grupos: Testudines (tortugas), Squamatas (lagartos y serpientes), Crocodylia (cocodrilos) y Rhynchocephalia (tuátuaras), este último presente únicamente en Nueva Zelanda (Rueda-Almoacid *et al.*, 2004).

Diversidad de reptiles. A la fecha The Reptile Database reporta 11440 especies de reptiles a nivel mundial (Uetz et al., 2021), de los cuales Colombia cuenta con aproximadamente 750 especies descritas posicionándose como el tercero a nivel mundial (Castro-Herrera y Vargas-Salinas, 2008; SiB, 2021). En este sentido, Squamata cuenta con ~570 especies, seguido de Testudines con ~35 especies y Crocodylia con cerca de seis especies (Galvis-Rizo et al., 2015).

Los herpetos como indicadores de la calidad del hábitat. Los anfibios y reptiles cumplen funciones cruciales en el ecosistema, sin embargo su importancia ha sido

subvalorada y pobremente entendida (Morales-Betancourt *et al.*, 2015). Entre los principales servicios que prestan, estos grupos son parte fundamental de las redes tróficas, cumpliendo roles como como presas, depredadores, comensales, dispersores de semillas, polinizadores, entre otros, contribuyendo sistemáticamente a la salud y el flujo energético entre los hábitats terrestres y acuáticos (Valencia-Aguilar *et al.*, 2013; Urbina-Cardona *et al.*, 2015).

Ambos grupos poseen una gran importancia ecológica no solo por su diversidad de especies, sino porque sus altos endemismos les hace excelentes bioindicadores del estado de conservación de una región determinada (Ruiz y Lynch, 1997). Además, debido a que muchas de sus especies muestran una asociación directa con el agua (desarrollando parte de su ciclo de vida en este hábitat) o con tipos de hábitats específicos, se han convertido en uno de los principales taxones bioindicadores del estado de conservación o degradación de ecosistemas estratégicos como los humedales (Quiroga, 2007; Gorka, 2010; Böhm *et al.*, 2013).

Pese a que la respuesta que presentan los herpetos es variada y depende del contexto espacial de la riqueza, la comunidad y/o las poblaciones sometidas a estrés ambiental (Duellman y Trueb, 1994; Di Tada et al., 1996; Driscoll, 2004; Sanabria et al., 2007; Bionda et al., 2012; Hernández-Córdoba et al., 2013; Theisinger y Ratianarivo, 2015 en Román-Palacios et al., 2017), de forma general, los procesos de transformación causados principalmente por actividades antropogénicas como la pérdida de hábitat, el cambio climático, las enfermedades emergentes, entre otros, han ocasionado que muchas de sus poblaciones se encuentren en declive (Crump, 2003; Young et al., 2004; Mendelson et al., 2006; Pounds et al., 2006; Urbina-Cardona y Cáceres 2009; Böhm et al., 2013; Valencia-Zuleta et al., 2014; Román-Palacios et al., 2017), posicionándolos como grupos prioritarios objeto de conservación.

En este sentido, el deterioro ecosistémico es altamente perjudicial para los anfibios, debido a aspectos fisiológicos propios del grupo como la permeabilidad de su piel, lo cual les hace más susceptibles a los cambios en la humedad y la temperatura ambiental (Angulo, 2002; Méndez-Narváez, 2014). Del mismo modo, su alta dependencia a un territorio y limitado desplazamiento, restringen la colonización de nuevas áreas y promueven una respuesta más visible a los cambios ambientales abruptos (Blaustein *et al.*, 1994; Marsh y Pearman 1997; Méndez-Narváez, 2014). Por su parte, los reptiles también pueden ser sensibles a la reducción en la calidad del hábitat (Gibbons *et al.*, 2000), siendo las especies menos móviles y con distribución más restringida las más propensas a ser afectadas (Reading *et al.*, 2010). Sin embargo, ya que gran parte de sus especies no son abundantes a nivel local, la estimación del estado de sus poblaciones son aún un desafío (Gibbons *et al.*, 2000, Rueda-Almonacid *et al.*, 2004).

Con base en todas sus características, fisiológicas, morfológicas y etológicas, algunos autores como Valencia y Garzón (2011), señalan que las consecuencias del estrés ambiental al cual son sometidos los herpetos una vez su hábitat se ve perjudicado son muy variables. Entre los principales efectos se encuentran las

fluctuaciones y cambios en las tendencias poblaciones, así como anomalías genéticas, comportamentales, morfológicas y fisiológicas, siendo la más evidente, un aumento en la tasa de mortandad (Valencia y Garzón, 2011).

Por todo lo mencionado, autores como Soto (2009), Suárez-González, (2017) y Troya-Caicedo (2017), hacen hincapié en la importancia tanto de los anfibios como los reptiles, como indicadores de la salud ambiental de los hábitats principalmente aquellos que presentan algún componente acuático.

3.2.1.5. Avifauna

Generalidades y diversidad de aves en Colombia. Las aves constituyen uno de los grupos vertebrados más diversos, comprendiendo cerca de 11000 especies a nivel mundial y entre 1954 (ACO, 2020) y 1999 (SiB, 2021) especies a nivel nacional (pertenecientes a 31 órdenes, 94 familias, 741 géneros y más de 3000 subespecies), de las cuales 1887 cuentan con registros en el territorio continental, mientras 17 han sido reportadas únicamente para la región insular (Donegan et al., 2013; Donegan et al., 2014; Donegan et al., 2015; Verhelst-Montenegro y Salaman, 2015; Avendaño et al., 2017).

Pese a que mundialmente el país es considerado el más diverso en avifauna (SiB, 2021) y que este grupo taxonómico cumple importantes roles ecológicos como controladoras de insectos, dispersoras de semillas, polinizadoras, entre otras funciones (Molina-Martínez, 2002), se estima que el 7-9% de las especies están inscritas en alguna categoría de amenaza (Renjifo et al., 2002; Andrade-C., 2011; SiB, 2021) y poco más del 4,5% del total de especies presentes en el país son endémicas (Avendaño et al., 2017). Así, según los reportes del Sistemas de información sobre biodiversidad en Colombia (SiB, 202) y con base en los datos de Renjifo et al. (2014), obtenidos a partir de la evaluación de 118 especies registradas en los bosques húmedos de los Andes y la costa Pacífica, se reporta que 68 (actualmente 133) de ellas se encuentran en diferentes categorías de amenaza de las cuales seis se encuentran en peligro crítico (16 según el SiB), 26 en peligro (54 según el SiB) y 36 vulnerables (63 según el SiB).

Las aves como indicadoras de la calidad del hábitat. Sin lugar a duda, las aves constituyen el grupo taxonómico más conocido y carismático en contraste con cualquier otro (Green y Figuerola, 2003), por lo cual se consideran uno de los principales objetos de estudio a la hora de estimular el interés hacia la conservación de la biodiversidad e implementar políticas de conservación y manejo de ecosistemas y hábitats (Renjifo et al., 2002; Villareal et al., 2004; Osorio-Huamaní, 2014).

La importancia de este grupo no solo radica en su carácter carismático, sino también se basa en el hecho de que proporciona un medio rápido, confiable y replicable de evaluación del estado de la mayoría de hábitats terrestres y acuáticos, facilitando la realización de comparaciones a lo largo de gradientes climáticos y ecológicos en cuanto a su riqueza, recambio y abundancia de especies (Osorio-Huamaní, 2014).

Además, proporciona un medio rápido, confiable y replicable para monitorear y conocer de forma indirecta algunas características de los ecosistemas que habitan. De hecho, algunos investigadores han encontrado que las características del paisaje influyen en la composición y abundancia de las aves, facilitando o impidiendo el mantenimiento de algunas especies (Gillespie y Walter, 2001).

Además, este grupo posee una serie de características que le hace ideal para inventariar gran parte de la comunidad con un buen grado de certeza (Osorio-Huamaní, 2014). Por ejemplo, presentan comportamientos llamativos (diurnas, muy activas y altamente vocales), su identificación es rápida y confiable, son fácil de detectar durante casi todo el año -excepto aquellas especies que presentan movimientos locales o migraciones-, cuentan con gran cantidad de información consignada en libros y publicaciones científicas, presentan un gran diversidad y especialización ecológica y exhiben diferentes grados de sensibilidad a perturbaciones ambientales (Villareal et al., 2004).

Pese a estas bondades, solo algunas especies pueden funcionar como indicadoras de condiciones biológicas particulares del hábitat, ya que "no necesariamente las aves pueden reflejar la salud de otros taxones que viven en el mismo hábitat" (Ramírez, 2000; Gregory, 2006 citado en Villegas y Garitano, 2008, p. 149), y "pueden tener respuestas diferenciales a los disturbios en relación a otros grupos de organismos" (Lindenmayer, 1999; Milesi et al., 2002 citados en Villegas y Garitano, 2008, p, 149). Así mismo, Green y Figuerola (2003) plantean que a pesar de que la idea de las aves como "paraguas protectores de la diversidad global" ha sido ampliamente extendida, no ha sido apoyada por los análisis a escala nacional, y la distribución de los "hotspots" de diversidad para aves es importante en si misma pero no se encuentra justificada por la diversidad de otros grupos.

En contraste, autores como Niemelä (2000), Becker (2003), Estrada-Guerrero y Soler-Tovar (2014), Echevarria (2018), entre otros, han mencionado que este grupo funciona como un buen indicador de la calidad ambiental, gracias a que responde a través de aspectos cualitativos (problemas reproductivos, adelgazamiento de la cáscara de los huevos, muerte, entre otros) y cuantitativos (cambios en la riqueza, diversidad y abundancia de especies) a los distintos cambios que puede sufrir su hábitat como producto de la degradación, marcando además de manera eficiente una pauta para establecer las acciones y decisiones a tomar en caso de que ocurran cambios drásticos en ellos.

En síntesis, el monitoreo de aves es una herramienta útil a la hora de evaluar el impacto de las acciones humanas y tomar decisiones sobre el manejo de los ecosistemas, siempre y cuando se realice de la mano con el seguimiento de otros grupos taxonómicos (fauna y flora) que puedan robustecer la información obtenida.

1.3. Las aves y los humedales. La alta diversidad de aves asociada a los humedales y el considerable número de linajes endémicos en algunos de ellos, son reflejo de una larga asociación entre la avifauna y estos ecosistemas (Andrade, 1998 citado por Parra, 2014). El uso de este ecosistema por parte de la avifauna se hace evidente con el carácter residencial permanente o temporal que muestran las

aves acuáticas (Castellanos, 2006) en el país, de modo que algunas especies han desarrollado adaptaciones morfológicas, fisiológicas y etológicas para hacer un uso más eficiente de los recursos (refugio y alimento).

Sin embargo, gracias a su mayor flexibilidad, otras tantas especies emplean estos hábitats durante parte del año o para cubrir determinada etapa de su ciclo anual (nidificación, cría o muda del plumaje) (Blanco, 1999). En este sentido, no todas las especies de aves que utilizan humedales tienen una preferencia particular por ellos, y en realidad se asocian al ecosistema en gran parte influenciadas por factores físicos como el área del humedal, la calidad del agua, la vegetación circundante, el grado de aislamiento o el contexto del paisaje donde se encuentran inmersos (Green y Figuerola, 2003; Briggs et al., 1997; Rosselli y Stiles, 2012; Quesnelle et al., 2013 citados por Parra, 2014).

Así mismo, las aves registradas dentro o en inmediaciones a humedales hacen parte de sistemas conectados con procesos y funciones ecosistémicos, por lo que es usual que su diversidad y abundancia aumente con la proximidad a otros humedales, así mismo que los humedales grandes alberguen mayor número de especies de aves respecto a las encontradas en sitios más pequeños las cuales se esperan que sean las especies más abundantes y ubicuas (Elmberg et al., 1994).

Hilty y Brown (2001) reportan para Colombia 256 especies de aves asociadas a cuerpos de aguas agrupadas en 12 órdenes taxonómicos (Hilty y Brown, 2001; Salaman, 2009), de las cuales la mayor parte pertenecen a grupos considerados como acuáticos (Charadriiformes, Ciconiiformes, Gruiformes y Anseriformes), y encontrando otros órdenes que normalmente no se asocian con estos ecosistemas como varias familias de Passeriformes (Furnariidae, Tyrannidae, Hirundinidae, Cinclidae, Emberizidae), Cuculiformes y Falconiformes.

Debido a la variación en la composición de aves asociadas a humedales en diferentes regiones del país (por ejemplo GIZ, 2010; 2015; 2016; 2018; 2019), conviene definir grupos particulares de especies como indicadoras en cada una de estas (Parra, 2014); sin embargo, hay que tener precaución a la hora de elegir una especie de ave como posible "bioindicadora" y considerar que un aumento en el número de algunas especies puede indicar una baja en el estado del hábitat en vez de una mejora (Green y Figuerola, 2003). De este modo, la identificación de especies raras, endémicas y categorizadas en algún grado de peligro juega un papel crucial debido a que su distribución restringida y/o el pequeño tamaño de sus poblaciones incrementan su riesgo de extinción (Arita et al., 1997), convirtiéndolas en una herramienta útil como indicativo del estado del hábitat incluyendo su calidad y niveles de perturbación, así como para el establecimiento de los límites de los humedales bajo ciertas escalas espaciales y temporales (Parra, 2014).

3.2.1.6. Mastofauna

La clase Mammalia es el grupo de mayor diferenciación biológica de todo el reino animal, siendo diversos en tamaños, formas y funciones, distinguiéndose de otros

animales por la forma del cráneo, el desarrollo y especialización de las piezas dentales, la presencia de pelo en algún momento de su vida y la presencia de glándulas sudoríparas, sebáceas y mamarias (Duque et al., 2019; Hickman et al., 1998; Vera, 2017). Este grupo, a pesar de no ser los vertebrados más diversos en términos de riqueza de especies, exhiben una gran diversidad morfológica y funcional, que les permite tener una influencia muy importante en el resto de la diversidad biológica, pues cumplen con importantes procesos ecológicos, entre los que se encuentran la polinización, la dispersión de semillas y el control poblacional de otras especies (González et al., 2013).

Para Colombia en la actualidad se registran 543 especies de mamíferos, pertenecientes a 14 órdenes, 50 familias y 214 géneros, ocupando el sexto lugar en términos de biodiversidad mundial de mamíferos y el cuarto en el continente americano (SIB, 2021). Sin embargo, esta diversidad no se encuentra homogéneamente distribuida en el país, debido a la gran variedad de climas y de microclimas presentes, los cuales conducen a la formación de comunidades adaptadas a condiciones especiales (Cuartas y Muñoz, 2003). Tal es el caso de los ecosistemas andinos, que albergan una gran diversidad biológica, pues se caracterizan por el alto grado de endemismo y un marcado recambio a nivel regional (Liévano y López, 2015). Es de destacar que, dentro de estas formaciones andinas, se encuentra el departamento del Tolima, el cual está representado por 126 especies de mamíferos, agrupadas en 88 géneros, 30 familias y 12 órdenes entre los que se resaltan Chiroptera y Rodentia como los más diversos con 71 y 18 especies respectivamente (García et al., 2019a).

Cabe recalcar que el orden Chiroptera, comúnmente conocidos como murciélagos, constituyen el orden de mamíferos ecológicamente más diverso del planeta (Bracamonte, 2018), siendo fundamentales en procesos como la polinización, debido a que son capaces de transportar grandes cargas de polen a distancias considerables, igualmente cumplen un rol indispensable en procesos de regulación como la dispersión de semillas y en la cadena trófica al ser consumidores primarios, secundarios y terciarios (Fleming et al., 2009; Kunz et al., 2011). Además, los murciélagos han sido sugeridos como importantes indicadores ecológicos, por su sensibilidad a una amplia gama de tensiones ambientales a las que responden de manera predecible (Jones et al., 2009).

Por otro lado, los humedales se encuentran entre los ecosistemas de mayor importancia ecológica y económica del mundo, debido a los innumerables servicios ecosistémicos que brindan, como el suministro de agua dulce, de alimentos, materiales de construcción y la mitigación del cambio climático (Hernández et al., 2018). Para los mamíferos, en especial para los quirópteros estos ecosistemas ofrecen diversos microhábitats que proveen refugio, áreas de reproducción, crianza y alimento pues favorecen la colonización, reproducción y alimentación de insectos acuáticos (García et al., 2020; Gordillo et al. 2015). Sin embargo, la forma en la que los murciélagos utilizan estos recursos en los humedales y áreas circundantes dependen de sus rasgos funcionales (García et al., 2020). Por lo anterior, se hace necesario generar estrategias de conservación en estos ecosistemas que permitan

ampliar el conocimiento de esta fauna y orientar el manejo y cuidado de los mamíferos asociados a estos biomas.

3.2.2. METODOLOGÍA

3.2.2.1. Macroinvertebrados

Métodos de campo: Una vez ubicada la estación de muestreo, se realizó la recolección de los macroinvertebrados acuáticos asociados al cuerpo de agua, para lo cual se utilizó una metodología dirigida hacia la fauna asociada a macrófitas y otra dirigida hacia la fauna béntica.

Recolección de fauna asociada a macrófitas acuáticas: Se extrajo la vegetación macrófita flotante y emergente ubicada al interior de un cuadrante de 0.25 m2 (Figura 21), posteriormente se realizó el lavado de dicho material (raíces, troncos y hojas sumergidas) haciendo pasar el agua que arrastró a los organismos a través de un tamiz de 0.3 mm de apertura, de manera que los organismos y el material particulado quedaron atrapados allí para obtener la muestra final.

Figura 21. Cuadrante de macrófitas para la recolección de macroinvertebrados acuáticos.

Fuente: GIZ, (2014)

Recolección de fauna béntica: Los macroinvertebrados bentónicos se recolectaron a partir del material sedimentado en el fondo del cuerpo de agua, de cual se extrajeron 2.5 litros que fueron lavados en un juego de tamices con un orden de aperturas de 2mm, 1 mm, 0.5mm y 0.3 mm (Figura 22).

Figura 22. Lavado de sedimentos en tamiz para la recolección de macroinvertebrados acuáticos.

Fuente: GIZ, (2014)

El material obtenido a partir de los dos procesos se almacenó en frascos plásticos, se fijó con alcohol al 70% y se etiquetó con los respectivos datos de recolección. Adicional a esto, se diligenció una ficha de campo por estación de muestreo, en la que se incluyen datos adicionales relacionados con variables ambientales y descripción de la estación de muestreo.

Métodos de laboratorio: Se realizó el procesamiento de muestras que incluyó la limpieza y separación de los organismos en alcohol al 70%, los cuales se determinaron hasta el nivel taxonómico de familia usando un estereomicroscopio Olympus SZ40. Para la determinación taxonómica se emplearon las claves y descripciones de McCafferty (1981), Machado (1989), Needham y Needham (1991), Rosemberg y Resh (1993), Lopretto y Tell (1995), Roldán (1996, 2003), Muñoz-Quesada (2004), Pointier et al. (2005), Merrit y Cummins (2008), Domínguez y Fernández (2009).

Finalmente, los organismos se organizaron siguiendo estándares nacionales y se ingresaron a la Colección Zoológica de la Universidad del Tolima sección Macroinvertebrados Acuáticos (CZUT-Ma).

3.2.2.2. Lepidopteros

Métodos de campo. Para la captura de ejemplares se utilizó el método de colecta con jama o red entomológica según las especificaciones de Villarreal et al. (2006) y Andrade et al. (2013). Estas colectas, se realizaron desde las 07:00 hasta 19:00 horas, con capturas al azar en transectos de longitud no definida (tipo sendero), tratando de abarcar gran parte del área de estudio para un total de 12 horas/jama/hombre (Figura 23).

Figura 23. Colecta de mariposas diurnas con red entomológica en el humedal Caracolizal, Melgar (Tolima).

Fuente: GIZ, 2021.

Los ejemplares colectados se sacrificaron por presión digital en el tórax y se almacenaron en sobres triangulares de papel milano, registrando los datos de captura como localidad, fecha, coordenadas, altura, hora, número de campo, número del lugar y método de colecta (Andrade et al. 2013). Para el transporte de los ejemplares se utilizó un recipiente de plástico hermético, cuyo interior contenía una base de silica gel, con el fin de evitar la proliferación de hongos por exceso de humedad y otras plagas (Ospina, 2014).

Métodos de laboratorio. Los ejemplares fueron sometidos al procedimiento de cámara húmeda durante un periodo de 48 horas, para lo cual se dispuso de un recipiente hermético cuya base contenía un paño absorbente humedecido con alcohol al 70%, esto con el fin de lograr el ablandamiento corporal, para su manipulación y montaje (Andrade et al. 2013). Una vez los ejemplares salieron de cámara húmeda, se les realizó un pinchazo en el tórax con alfileres entomológicos dependiendo de su tamaño y se realizó la extensión alar en láminas de poliestireno (icopor), permaneciendo allí aproximadamente ocho días, permitiendo un secado completo de los ejemplares (Ospina, 2014).

Para la determinación taxonómica de los ejemplares se utilizaron las claves, ilustraciones y descripciones de Andrade (1990), D'Abrera, (1982, 1984, 1987a, 1987b, 1989, 1994, 1995), De Vries, (1987), Ehrlich y Ehrlich (1961), Fox y Real (1971), García et al. (2002), Le Crom et al. (2002, 2004), Neild (1996).

Adicionalmente, se utilizó la base de datos con galería fotográfica Butterflies of America (Warren et al., 2016). Una vez determinados, los ejemplares se ingresaron a la Colección Zoológica de la Universidad del Tolima, sección Lepidópteros (CZUT-LEP). Una vez determinados, los ejemplares se ingresaron a la Colección Zoológica de la Universidad del Tolima, sección Lepidópteros (CZUT-LEP).

Análisis de datos. Se calculó la abundancia relativa y la riqueza específica, para familias, subfamilias y especies. Además, se consignó la información sobre categorías de amenaza nacional (Ministerio de Ambiente y Desarrollo, 2017) y global (IUCN, 2021), apéndices CITES (2017) y migración (Ministerio de Ambiente, Vivienda y Desarrollo Territorial y WWF, 2009).

3.2.2.3. Ictiofauna

Métodos de colecta. Para la colecta de los individuos se empleó la electropesca por las ventajas que representa frente a otros artes de pesca convencionales, en términos de volumen y talla de captura de los organismos (Mojica y Galvis, 2002). Adicionalmente, es el método que más se ajusta a las condiciones que presentan los cuerpos de agua andinos, y el más utilizado para estimar la abundancia y composición en ecosistemas dulceacuícolas (Maldonado-Ocampo et al., 2005), su principal limitación se observa en aguas con mala conductividad (Mojica y Galvis, 2002).

El equipo de electropesca se empleó en las zonas cercanas a los márgenes y, en general, en profundidades no mayores a 1.5 - 2 m. La unidad de muestreo estuvo constituida por un transecto de 100 m lineales, y ancho variable, con un esfuerzo de muestreo de una hora de trabajo, adicionalmente, se utilizó una red de arrastre, realizando diferentes arrastres en los márgenes del humedal.

Métodos de sacrificio, fijación y transporte de muestras. Sacrificio: Los ejemplares fueron sumergidos en una solución de aceite de clavo o eugenol (17 mg/L, por 10 minutos) y se recambió el agua para evitar su muerte. Los ejemplares se mantuvieron en la solución descrita anteriormente hasta que el movimiento opercular cesó, siguiendo lo propuesto por American Veterinary Medical Association AVMA (2013).

Fijación: Una vez cesaron los movimientos operculares, los ejemplares se sumergieron en una solución de formol al 10%, para su transporte, evitando así la descomposición de tejidos.

Transporte: Los especímenes fueron depositados en bolsas plásticas de sello hermético, con la correspondiente etiqueta de campo, y se transportaron vía terrestre en una nevera hermética, hasta el Laboratorio de Investigación en Zoología de la Universidad del Tolima, en la ciudad de Ibagué. Una vez en el laboratorio, el material biológico se pasó a alcohol al 70% para su preservación final.

Métodos de Laboratorio: El material íctico se determinó taxonómicamente empleando literatura especializada de Maldonado-Ocampo et al, (2005) y García-Alzate et al., (2015); posteriormente, se realizó el ingreso del material a la Colección Zoológica de la Universidad del Tolima, sección – Ictiología (CZUT-IC).

3.2.2.4. Herpetofauna

Métodos de campo. Los muestreos se realizaron mediante la técnica de búsqueda libre, sin restricciones, por encuentro visual. Se evaluaron áreas cercanas a los cuerpos de agua, así como microhábitats predispuestos para encontrar anfibios o reptiles, como troncos, rocas, arbustos, entre otros (Heyer et al., 1994). El muestreo tuvo una periodicidad alternada entre las 06:00 y las 08:00 h con el fin de detectar aquellas especies de hábitos diurnos (p.e. familia Dendrobatidae); entre las 11:00 y las 14:00 para aquellos reptiles que se exhiben y posan con el fin de termoregularse (principalmente lagartos) y entre las 18:00 y las 22:00, para organismos que demuestran una mayor actividad nocturna (Angulo et al., 2006).

Figura 24. Procedimiento de búsqueda y captura de herpetos en el Humedal Caracolizal, ubicado en el municipio de Melgar (Tolima).

Fuente: GIZ (2021)

Los animales colectados fueron fotografiados y determinados, además se realizaron anotaciones respecto a su coloración en vida y la actividad que realizaba al momento de la captura. Los individuos seleccionados se sacrificaron mediante técnica de punción cardiaca con Xilocaina, para serpientes y animales de tamaño grande, mientras aquellos con respiración cutánea y de tamaño pequeños fueron sacrificados empleando un anestésico de Lidocaina aplicable. Posteriormente, los individuos fueron puestos en bandejas plásticas con papel absorbente e impregnados con formol al 10%, hasta su posterior tratamiento para ser ingresados en colección (Heyer et al., 1994; Angulo et al., 2006).

Figura 25. Procedimiento registro de herpetos en el Humedal Caracolizal, ubicado

en el municipio de Melgar (Tolima).

Fuente: GIZ (2021)

Métodos de laboratorio. Los individuos colectados fueron transportados al laboratorio del Grupo de investigación en Zoología de la Universidad del Tolima, donde fueron preservados, de acuerdo al protocolo propuesto por McDiarmid (1994): Se lavaron con agua destilada por dos horas, luego se colocaron en etanol al 70% por tres días y finalmente, se conservaron en etanol al 70% limpio. Después de pasado quince días, los organismos fueron sometidos a la eliminación del fijador y posteriormente preservados en alcohol al 70% para ser ingresados a la Colección Zoológica de la Universidad del Tolima (CZUT) (Heyer et al., 1994; Angulo et al., 2006).

Se realizó y confirmo la determinación de cada uno de los organismos, empleando descripciones taxonómicas, claves dicotómicas y/o publicaciones, así como la comparación diagnostica de los individuos colectados confrontados con los especímenes dispuestos en la CZUT, sección Anfibios y Reptiles. Finalmente, los organismos fueron ingresados a la Colección Zoológica de la Universidad del Tolima (CZUT-A; CZUT-R).

3.2.2.5. Avifauna

Métodos de campo. Para la determinación de la composición taxonómica de la avifauna dentro del humedal Caracolizal, se realizaron muestreos mediante el uso de redes de niebla, la observación por puntos de conteo y las observaciones libres (Ralph et al., 1993; Ralph et al., 1996), con el objetivo de abarcar una mayor área circundante al humedal.

Redes de niebla. En zonas cercanas al humedal se extendieron cinco redes de niebla de 2,5 m de alto x 12 m de largo y 36 mm de malla, según el procedimiento descrito por Ralph et al. (1996). La instalación de las redes se realizó poco antes de iniciar el muestreo (Wunderle, 1994), se abrieron en los 15 minutos siguientes al amanecer y su revisión se llevó a cabo en intervalos de 30 minutos para asegurar

la integridad de los ejemplares (Consejo de Anillamiento de Aves de Norteamérica. 2003; Ralph et al., 2008). Las redes se operaron durante un día en horarios de 06:00-11:00 h y 15:00-18:00 h, para conseguir un esfuerzo de 40 horas red/muestreo (Figura 26).

La extracción de las aves capturadas se realizó mediante el método de sujeción del cuerpo y la técnica de patas primero, descritas por Ralph et al. 1993) y Ralph et al. (1996), proporcionando agilidad en la extracción de los ejemplares y garantizando su integridad. A cada una de las aves se le tomaron los datos relacionados con edad, condición física, estado reproductivo y medidas morfométricas. Toda la información se registró en formatos de campo siguiendo las recomendaciones de la NABC (2003) y Ralph et al. (2008).

Conteo por puntos. Mediante el uso de binoculares (Bushnell 10x42), se contaron, identificaron y registraron las aves detectadas desde un sitio definido o "punto de conteo". Cada punto (en total cinco) abarcó una superficie circular de 50 m de radio y dentro de él se contaron todas las aves avistadas y escuchadas a lo largo de diez minutos, anotándolas en el orden en que fueron detectadas, junto con los datos correspondientes a localidad- número del punto, fecha, hora, coordenadas, tipo de registro (visual y/o auditivo), nombre de la especie, número de individuos, hábitat y distancia del individuo al borde del agua (Modificado de Ralph et al., 1996) (Figura 27).

Figura 26. Procedimiento de captura de aves en el Humedal Caracolizal, ubicado

en el municipio de Melgar (Tolima).

Fuente: GIZ (2021)

Figura 27. Metodología de puntos de conteo y observaciones libres implementada en el Humedal Caracolizal, ubicado en el municipio de Melgar (Tolima).

Fuente: GIZ (2021)

Una vez pasado el tiempo, se realizó un nuevo muestreo en el punto de conteo consecutivo -procurando causar el mínimo de perturbación a las aves e iniciando el conteo desde la llegada al lugar-. Con el fin de evitar contar a un mismo individuo en puntos de conteo diferentes, estos estuvieron separados entre sí a una distancia aproximada de 100 m (Ralph et al., 1996).

Debido a que en ocasiones la identificación in situ de algunas especies resultó difícil, se procedió a ubicar el individuo mediante el método de "Búsqueda Intensiva" (Ralph et al., 1996), con el fin de fotografíalo o grabarlo para su posterior identificación.

Método de determinación taxonómica. Para la determinación hasta el nivel de especie de los individuos capturados en campo y los observados en los puntos de conteo (u observaciones libres), se emplearon las guías de Hilty y Brown (2001), Restall et al. (2006), McMullan et al. (2010) y Ayerbe (2018). El listado general de las aves siguió la nomenclatura y el orden taxonómico sugerido por Remsen et al. (2021).

Análisis de datos. Se calculó la abundancia relativa (%) a nivel de órdenes, familia y especies de aves registradas, empleando la fórmula: AR%= (ni/N) x 100, dónde AR= Abundancia relativa; ni= Número de individuos capturados u observados; N= Número total de X capturados u observados.

A cada uno de los registros de aves obtenidos mediante las dos metodologías empleadas, se les consignó la categoría ecológica siguiendo las recomendaciones de Stiles y Bohórquez (2000).

3.2.2.6. Mastofauna

Métodos de campo.

Mamíferos voladores: El registro se llevó a cabo por medio de cuatro redes de niebla de 12 metros de largo por 2.6 metros de alto, las cuales fueron ubicadas a nivel de

sotobosque, de acuerdo a las características florísticas del humedal (Tirira, 1998). Estas redes permanecieron abiertas entre las 17:00 y 21:00 horas, siendo revisadas cada 20 minutos. El manejo de los individuos capturados se realizó siguiendo los lineamientos de la Sociedad Americana de Mastozoología (Sikes et al., 2016).

Posterior a la captura y como herramienta básica para la determinación taxonómica de las especies, se llevó a cabo el registro fotográfico y la toma de medidas morfométricas y morfológicas, consignadas en fichas de campo, además, se registró el sexo y la condición reproductiva de acuerdo con la metodología propuesta por Kunz et al. (1996). Asimismo, se consignaron los datos de localización, como departamento, municipio, vereda, coordenadas geográficas y altura sobre el nivel del mar (Figura 28). Finalmente, la determinación taxonómica se llevó a cabo por medio de las claves y guías ilustradas de Díaz et al. (2016), Gardner (2007), Sánchez et al. (2014), Velazco y Patterson (2019).

Mamíferos medianos y grandes: Se realizaron búsquedas visuales por medio de un censo por rastreo sobre senderos con el objetivo de inspeccionar fecas, huellas, comederos, madrigueras, restos óseos entre otras evidencias de actividad (Villa et al. 2019). Para la determinación de estos registros se utilizó el manual de Aranda (2012).

Finalmente, para complementar los datos obtenidos, y teniendo en cuenta que los hábitos elusivos de los mamíferos dificultan su registro en tiempos cortos, se realizaron entrevistas semistructuradas a pobladores locales apoyadas en fotografías de mamíferos de Colombia y complementando con preguntas específicas sobre las especies reconocidas (Sánchez et al. 2004).

Figura 28. Captura de mamíferos voladores en el humedal Caracolizal, Melgar (Tolima).

Fuente: GIZ, 2021.

Métodos de laboratorio. Todos los individuos fueron liberados, sólo en los casos fortuitos de muerte o cuya determinación taxonómica requirió la colecta, estos fueron sacrificados inyectando Roxicaina 2% lidocaína directamente en el corazón y con alcohol al 70% en el estómago, con el fin de conservarlos para el transporte. Los individuos fueron transportados al laboratorio del Grupo de Investigación en Zoología, para su procesamiento e ingreso a la Colección Zoológica de la Universidad del Tolima (CZUT), donde se les realizo el proceso de taxidermia siguiendo el método de piel rellena, sometiendo los cráneos a un tratamiento de limpieza con derméstidos para la toma de medidas morfométricas necesarias para su determinación (Díaz et al., 1998).

Análisis de datos. Para cada uno de los grupos se calculó la riqueza específica definida como el número de especies y la abundancia relativa a través de:

$$% AR = (n1 / N) \times 100.$$

Donde:

AR= Abundancia relativa del taxón n1= El número de individuos registrados de cada taxón N= El número total de individuos registrados

Además, se consignó la información sobre gremios tróficos, categorías de amenaza nacional (Ministerio de Ambiente y Desarrollo, 2017) y global (IUCN, 2021), apéndices CITES (2017), uso local, endemismo (Ramírez et al. 2016) y migración (Ministerio de Ambiente, Vivienda y Desarrollo Territorial y WWF, 2009).

3.2.3. FAUNA PRESENTE EN EL HUMEDAL

3.2.3.1. Macroinvertebrados

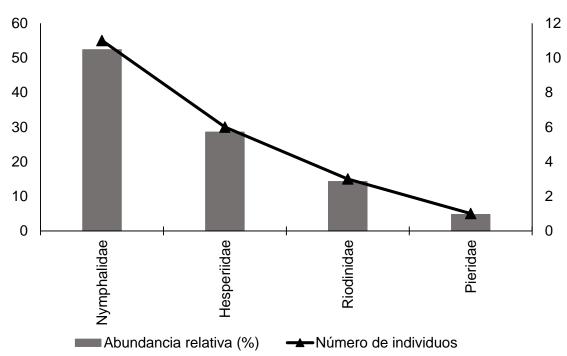
En la caracterización durante el desarrollo del PMA 2014 se identificó que los macroinvertebrados del Humedal Caracolizal se agrupan en 2 phylum, 2 clases, 3 órdenes y 4 familias (Tabla 8, Anexo B) (Reinoso et al. 2010). De acuerdo con el índice BMWP/Col (Roldan, 2003), el Humedal presenta calidad de agua Muy crítica (aguas fuertemente contaminadas), resultados que reflejan el hecho de que la mayoría de las familias halladas en este humedal se asocian con aguas de mala calidad. La puntuación del BMWP para cada una de ellas no sobrepasa a tres: la clase Oligochaeta presenta un valor de uno (1), la familia Chironomidae un valor de dos (2) y un valor de tres (3) para el caso de Ceratopogonidae. Sin embargo, sólo la familia Baetidae presenta un valor alto de puntuación la cual se encuentra asociada con aguas limpias (Roldán, 1999).

De acuerdo con lo anterior, éste humedal se considera como un área de fragilidad ambiental (Reinoso et al. 2010), dicha situación sugiere el ajuste urgente de un plan de manejo, restauración y recuperación tanto del espejo de agua como de la calidad del mismo.

Finalmente, los resultados coinciden con lo descrito en estudios anteriores donde se reporta el Humedal Caracolizal como un espejo de agua con procesos de descomposición de materia orgánica, presenta un impacto severo, producto de las actividades ganaderas extensivas alrededor del mismo, su uso como vertedero de aguas servidas de los predios cercanos y superficie colonizada en su totalidad por plantas acuáticas y desechos.

Tabla 8. Macroinvertebrados acuáticos registrados en el Humedal Caracolizal (Chimbi) departamento del Tolima (abril, 2010) (Reinoso et al. 2010).

PHYLLUM	CLASE	ORDEN	FAMILIA
Annelida	Oligochaeta	Haplotaxida	Haplotaxida 1
Arthropoda	Insecta	Diptera	Ceratopogonidae
			Chironomidae
		Ephemeroptera	Baetidae
TOTAL	2	3	4


Fuente: GIZ, (2014).

El Humedal presentó condiciones críticas de calidad de agua y pobreza en la comunidad de macroinvertebrados, lo que indica muy malas condiciones del mismo y sugiere la formulación urgente de estrategias de recuperación, restauración y conservación.

3.2.3.2. Lepidopteros

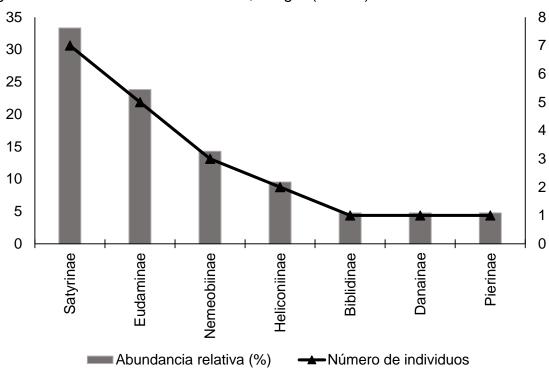
A 2021 la caracterización de mariposas en el humedal permitió el registro de 21 individuos, pertenecientes a cuatro familias, siete subfamilias, 13 géneros y 14 especies (Tabla 9, Anexo C). Encontrando que la familia Nymphalidae mostro la mayor representatividad con una abundancia relativa del 52% (11 individuos), seguida de Hesperiidae con 28% (6 individuos), Riodinidae 14% (3 individuos) y finalmente, Pieridae con una abundancia del 5% (1 individuo) (Figura 29).

Figura 29. Abundancia relativa y riqueza de las familias de lepidópteros diurnos registradas en el humedal Caracolizal, Melgar (Tolima).

Fuente: GIZ, 2021.

Como lo menciona Urbano y colaboradores (2018) las mariposas son muy sensibles a la fluctuación de variables ambientales como la temperatura, la estacionalidad, humedad relativa, radiación solar, entre otras variables bióticas y físicas que afectan su distribución y abundancia (Ramírez et al. 2007). Por tanto, la diversidad de mariposas esta significativamente correlacionada con la variedad de condiciones adecuadas, que incluyen una fuente de néctar, agua, barro, luz solar y plantas hospederas, así como condiciones microclimáticas que requieren para su reproducción (Dessuy y de Morais, 2007; Hogsden y Hutchinson, 2004). Es así, como la ausencia de familias como Papilionidae se puede explicarse por la falta de disponibilidad de plantas hospederas de la familia Aristolochiaceae (Palacios et al. 2018). De igual manera, la ausencia de Lycaenidae puede estar relacionada con la diversidad que exhiben las mariposas a una gran variación entre diferentes épocas del año en relación con la fenología y la estacionalidad, además de un sesgo en la captura, debido a sus coloraciones opacas, su tamaño pequeño o la alta presencia de especies errantes (Boom et al. 2013; Urbano et al. 2018).

Así mismo, la alta representatividad de especies e individuos reportados para la familia Nymphalidae puede estar relacionada con su amplia distribución en todo el mundo, siendo quizás la familia de mariposas más diversa en términos de hábito y morfología, con el mayor número de especies conocidas, pues posee hábitos alimenticios variables que le permiten ocupar una gran variedad de hábitats (Campos et al. 2011, Freitas y Brown, 2004; González et al. 2016; Madruga et al. 2013; Mercado et al. 2018; Santos et al. 2011). Por otro lado, la baja abundancia de Pieridae puede darse quizás por un sesgo en la captura, pues esta familia incluye especies multivoltinas, que son de amplia distribución en el territorio y vuelan la mayor parte del año (Boom et al. 2013).


Tabla 9. Lepidópteros diurnos registrados en el humedal Caracolizal, Melgar

(Tolima).

Familia	Subfamilia	Especie	Número de individuos	AB %
Hesperiidae	-	Hesperiidae sp. 2 Latreille, 1809	1	5
Hesperiidae	Eudaminae	Antigonus erosus (Hübner, [1812])	3	14
Hesperiidae	Eudaminae	Burnsius orcus (Stoll, 1780)	1	5
Hesperiidae	Eudaminae	Xenophanes tryxus (Stoll, 1780)	1	5
Nymphalidae	Biblidinae	Pyrrhogyra neaerea (Linnaeus, 1758)	1	5
Nymphalidae	Danainae	Mechanitis polymnia (Linnaeus, 1758)	1	5
Nymphalidae	Heliconiinae	Heliconius erato (Linnaeus, 1758)	2	10
Nymphalidae	Satyrinae	Hermeuptychia hermes (Fabricius, 1775)	1	5
Nymphalidae	Satyrinae	Pareuptychia ocirrhoe (Fabricius, 1776)	2	10
Nymphalidae	Satyrinae	Posttaygetis sp. (Cramer, 1777)	1	5
Nymphalidae	Satyrinae	Pseudodebis puritana (Weeks, 1902)	1	5
Nymphalidae	Satyrinae	<i>Yphthimoides</i> sp. Forster, 1964	2	10
Pieridae	Pierinae	<i>Melete lycimnia</i> (Cramer, 1777)	1	5
Riodinidae	Nemeobiinae	Euselasia mys (Herrich-Schäffer, [1853])	3	14

Fuente: GIZ, 2021

A nivel de subfamilias (Figura 30), se registró mayor abundancia para Satyrinae con 33% (7 individuos), siendo la subfamilia que comprende un tercio de todas las especies de la familia Nymphalidae, presentando una amplia diversidad, biología y distribución (Madruga et al. 2013). Además, su relación con monocotiledóneas, le permite ser abundante en los claros, pero principalmente en el borde y alrededor de los bosques (Madruga et al. 2013; Peña y Wahlberg, 2008). De igual manera, estas mariposas exhiben estrategias biológicas como el melanismo alar, los mecanismos de termorregulación y las tallas corporales pequeñas, factores que les permiten sobrevivir a depredadores y les dan una mayor flexibilidad y respuesta adaptativa frente a restricciones ambientales (Montero y Ortiz, 2013; Tafur, 2020).

Figura 30. Abundancia relativa y riqueza de las subfamilias de lepidópteros diurnos registradas en el humedal Caracolizal, Melgar (Tolima).

Fuente: GIZ, 2021.

Respecto a las 14 especies reportadas (Tabla 9), se encontró como más abundante a *Myselasia mystica* y *Antigonus erosus* (Hübner, [1812]) con tres individuos cada una. La presencia de estas especies puede estar relacionada con abundancia y disponibilidad de plantas hospedera, además de las condiciones micro climáticas (Peña y Reinoso, 2016). Por un lado, *Myselasia mystica* es una especie centroamericana que hace parte de los riodínidos del Neotrópico con mayor cantidad de especies, distribuidas desde México hasta el nordeste de Argentina desde el nivel del mar hasta los 2800 m., utilizando como plantas hospederas familias pertenecientes a Guttiferae, Myrtaceae, Melastomataceae, Sapotaceae y Leguminosae (Salazar et al. 2019). Por otro lado, *Antigonus erosus* se considera una especie copronecrófaga, común y extendida que tiene una gran diversidad, pues se distribuye desde México hasta Paraguay, usando como planta hospedera Malvaceas en especial *Guazuma ulmifolia*, especie reportada en este estudio (Cock, 1997; Umaña, 2015).

Especies de interés. Todas las mariposas diurnas juegan un papel muy importante en el ecosistema debido a los roles ecológicos que desempeñan, tales como la polinización, ya que al presentar adaptaciones especiales en ojos y poseer probóscide, pueden visitar flores con corolas largas y bases estrechas, considerándose primordiales en el transporte de cargas polínicas (Tobar et al. 2001). Además, la especificidad de algunas mariposas en estado larval por determinadas especies vegetales como hospederas y los requerimientos

nectarívoros de los adultos, las convierte en un componente importante dentro de los ecosistemas, que se traduce en la función de remoción de área foliar, siendo fundamentales dentro de las pirámides tróficas como fuente importante de alimento para otros organismos, estas interacciones han sido interpretadas como el resultado de procesos coevolutivos y uno de los factores responsables de la megadiversidad en los bosques tropicales (Gallego y Gallego, 2019).

Adicionalmente, es importante mencionar que las mariposas diurnas han sido utilizadas como indicadoras del estado de conservación de ecosistemas y de diversidad de otros grupos biológicos debido a que tienen ciclos de vida cortos, son sensibles a variables como la humedad, radiación solar y temperatura (Brown y Freitas, 2002; Kremen et al. 1993; Orozco et al. 2009).

Especies en categoría de amenaza. Ninguna de las especies registradas se encuentra catalogada como amenazada a nivel nacional o global.

Especies en apéndices CITES. Ninguna de las especies registradas en el humedal se encuentra incluida en los apéndices que regulan el comercio internacional de especies amenazadas.

Conclusión

Este estudio aporta conocimiento sobre las mariposas diurnas encontradas en el Humedal Caracolizal, contribuyendo al listado de mariposas en el departamento del Tolima, permitiendo inferir que el humedal es un hábitat propicio para la conservación de especies y ecosistemas. Por lo anterior, se hace necesario desarrollar inventarios más precisos, que permitan relacionar el mantenimiento e integridad del bioma con la fauna de mariposas presentes, así mismo implementar acciones, planes y programas que conserven y mantengan la heterogeneidad del paisaje como un factor fundamental en el sostenimiento de los ensambles de mariposas

3.2.3.3. Ictiofauna

No se colectaron peces a 2021, el humedal Caracolizal se encontraba seco en el momento del monitoreo, adicionalmente, se evidenció una alta intervención antrópica. Este mismo aspecto se presentó durante la ejecución de los muestreos durante el PMA de 2014.

3.2.3.4. Herpetofauna

Abundancias relativas. En el muestreo de herpetofauna asociada al humedal Caracolizal a 2021 se registraron diez especies pertenecientes a dos órdenes y siete familias (Tabla 10, Anexo D). Estos resultados corresponden al 0.6% de la herpetofauna del país (Acosta-Galvis, 2021; SIB, 2021), siendo a su vez el 2.5% de los anuros (396 especies según Bernal y Lynch, 2008) y el 3.6% de los reptiles (277 especies según Romero *et al.*, 2008) reportados para a región Andina del país.

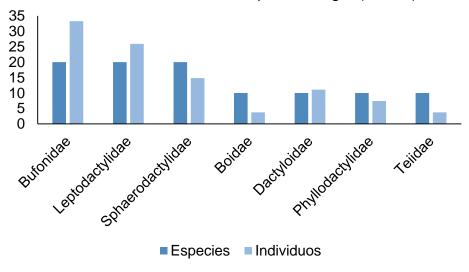
El orden Squamata mostró un mayor número de especies (seis) y familias (cinco), sin embargo Anura presentó un mayor número de registros (Figura 31). Este resultado no se ajusta a lo encontrado en información secundaria, la cual muestra una mayor presencia de anfibios que reptiles concordando con lo reportado para el país (Rueda-Almonacid, 1999); sin embargo, el encuentro más o menos equitativo de los dos grupos en la zona de estudio es un indicativo claro de la presencia de condiciones óptimas y recursos importantes para ambos dentro del humedal (Reinoso-Flórez et al., 2010).

80 71.43 70 60.00 59.26 60 50 40.74 40.00 40 28.57 30 20 10 0 Squamata Anura ■ Familias ■ Especies ■ Individuos

Figura 31. Abundancia relativa de familias, especies y registros en los órdenes de herpetos presentes en el humedal Caracolizal, municipio de Melgar (Tolima).

Fuente: GIZ (2021)

En general, las familias más diversas fueron Bufonidae, Leptodactylidae y Sphaerodactylidae con 20% de las especies cada una (dos) seguida por las demás familias tanto de anfibios como de reptiles las cuales contaron con una sola especie (Figura 32). En el caso de Leptodactylidae, este resultado coincide con lo reportado por Acosta-Galvis (2021), quien señala que el grupo en cuestión es uno de los más diversificados (restringiéndose al nuevo mundo) y la actual distribución de sus integrantes lo enmarcan en un grupo asociado a las tierras bajas con algunas excepciones particulares. Por su parte, lo bufónidos pese a no ser altamente diversos, están ampliamente distribuidos, con representantes en todos los continentes excepto en Australia, Madagascar y regiones oceánicas (Caseco-Márquez, 2010), y en Colombia sus especies presentan distribuciones que abarcan los ecosistemas de páramo hasta ambientes desérticos y selva tropicales en tierras bajas (Acosta-Galvis, 2021).

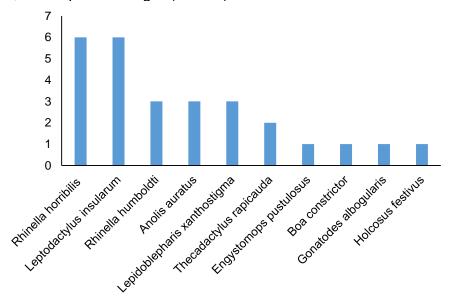

Además, Reinoso-Flórez et al. (2010) afirman que la mayor parte de bufos de tierras bajas se encuentra principalmente asociados a áreas abiertas destinadas a la

ganadería o en lugares con algún tipo de intervención antrópica, utilizando microhábitats acuáticos y terrestres, por lo cual se catalogan como resistentes a la acción antrópica. Sin embargo, debido a que esta familia junto con otras como Hylidae y Centrolenidae, depositan sus huevos directamente en el cuerpo de agua o en la vegetación adyacente (Lynch y Suárez-Mayorga, 2002), se ha mostrado que sus especies se ven afectadas por contaminantes en el agua y corren el riesgo de sufrir daños térmicos cuando no hay buena cobertura vegetal en los bordes (Blaustein et al., 1994; Lips, 1998).

Respecto a los reptiles, el patrón de abundancia de las familias y especies registrado en esta investigación en donde los lagartos son relativamente abundantes y las serpientes están ausentes, parece ser general para este grupo, ya que en estudios previos realizados bajo un sistema de búsqueda similar se ha observado una situación análoga (p.e. Humedal Ambalemita, El Burro, El Oval, El Zancudal, entre otros) (GIZ, 2010). Esto se puede relacionar con el hecho de que las serpientes son más crípticas que los lagartos, presentan menos movilidad y generalmente no presentan poblaciones de tamaño grande ya que se encuentran sometidas a una mayor presión antropogénica (Urbina-Cardona *et al.*, 2006).

Este resultado coincide con trabajos previos realizados en este tipo de hábitat y a niveles altitudinales similares, en donde familias como Bufonidae y Leptodactylidae tienden a ser las más representativas (Humedal Ambalemita, El Burro, El Zancudal, La Garcera, La Herreruna, La Moya De Enrique, La Pedregosa, La Zapuna, Azuceno, Rio Viejo, Saldañita, Samán, Caracolí, El Silencio, Gavilán, Toqui-Toqui, Corinto y El Suizo) (Grupo de Investigación en Zoología [GIZ], 2010, 2015, 2016, 2018, 2019).

Figura 32. Abundancia relativa de especies y registros en las familias de herpetos presentes en el humedal Caracolizal, municipio de Melgar (Tolima).


Fuente: GIZ (2021)

Las especies más abundantes fueron *Leptodactylus insularum* y *Rhinella horribilis* con cinco y cuatro registros respectivamente. Estas dos especies de ranas son altamente tolerantes a la intervención antrópica y constituyen especies típicas de tierras bajas de Colombia, debido principalmente a que su biología reproductiva implica una etapa larval, en la cual requieren de cuerpos de agua para su desarrollo (Rueda-Almonacid, 1999; Reinoso-Flórez *et al.*, 2010).

Concretamente la especie *L. insularum* se distribuye en gran parte del Tolima (Stebbins y Hendrickson, 1959; Cochran y Goin, 1970; Ruiz-Carranza *et al.*, 1996; Acosta-Galvis, 2000; Bernal *et al.*, 2005; Llano *et al.*, 2010; Heyer y De Sá, 2011; Acosta, 2012; Bernal y Lynch, 2013), registrándose en una variedad de hábitats como bosques y pantanos de elevaciones bajas (IUCN 2021). Además, es una rana terrestre y nocturna con machos que realizan llamados desde aguas poco profundas, a menudo después de fuertes lluvias (Hurme, 2014), por lo cual son fácilmente detectables por medio de la metodología de búsqueda intensiva.

Por su parte, *R. horribilis* es una especie asociada a áreas abiertas siendo muy común en zonas agrícolas o urbanas y registrándose con menor frecuencia en bosques no intervenidos (Savage, 2002). Se reproduce en charcos permanentes, temporales o en charcos a lo largo de orillas de ríos durante ambas temporadas climáticas (Savage, 2002), por lo cual sus individuos son abundantes durante todo el año y gracias a sus hábitos terrestres, nocturnos, vocales y a que sus los juveniles están activos durante el día (Savage, 2002), la especies es muy común de registrar mediante las metodologías de observación a lo largo del día.

Figura 33. Abundancia total de registros por especie de aves en el humedal Caracolizal, municipio de Melgar (Tolima).

Fuente: GIZ (2021)

ESPECIES DE INTERÉS

Especies en categoría IUCN. Al revisar los libros rojos de anfibios y reptiles de Colombia (Rueda-Almonacid *et al.*, 2004; Galvis-Rizo *et al.*, 2015) y la lista roja de la IUCN (2021) en el humedal Caracolizal no se registraron especies en categorías de amenaza, de modo que todas las especies reportadas se localizan en la categoría "preocupación menor" (LC) (Tabla 10).

Especies en apéndices CITES. Del total de especies reportadas, la especie *Boa constrictor* se encuentra registrada en el apéndice II del CITES (Roda *et al.*, 2003), constituyendo una especie que no está necesariamente amenazadas de extinción pero que podrían estarlo si no se controla su comercio.

Tabla 10. Especies registradas en el humedal Caracolizal, municipio de Melgar

(Tolima).

(. σα).					
Clase	Orden	Familia	Especie	AB	IUCN
Amphibia	Anura	Bufonidae	Rhinella horribilis	6	LC
Amphibia	Anura	Bufonidae	Rhinella humboldti	3	LC
Amphibia	Anura	Leptodactylidae	Engystomops pustulosus	1	LC
Amphibia	Anura	Leptodactylidae	Leptodactylus insularum	6	LC
Reptilia	Squamata	Boidae	Boa constrictor	1	LC
Reptilia	Squamata	Dactyloidae	Anolis auratus	3	LC
Reptilia	Squamata	Phyllodactylidae	Thecadactylus rapicauda	2	LC
Reptilia	Squamata	Sphaerodactylidae	Gonatodes albogularis	1	LC
Reptilia	Squamata	Sphaerodactylidae	Lepidoblepharis xanthostigma	3	LC
Reptilia	Squamata	Teiidae	Holcosus festivus	1	LC

Fuente: GIZ (2021)

Al comparar la información de especies reportadas en el PMA 2014 con el ajuste 2021 se registra tan solo 10 especies, actualmente. Esto significa una reducción del 40% de la riqueza de herpetofauna en el humedal.

Especies de herpetos identificadas en el PMA 2014 y en el PMA 2021

No.	HERPETOS REGISTRADOS PMA	HERPETOS REGISTRADOS PMA
	2014	2021
1	Rhinella gr. margaritifera	Rhinella horribilis
2	Scinax ruber	Rhinella humboldti
3	Leptodactylus fragilis	Engystomops pustulosus
4	Caiman crocodilus	Leptodactylus insularum
5	Drymarchon corais	Boa constrictor
6	Erythrolamprus melanotus	Anolis auratus
7	Imantodes cenchoa	Thecadactylus rapicauda
8	Leptodeira annulata	Gonatodes albogularis
9	Spilotes pullatus	Lepidoblepharis xanthostigma
10	Stenorrhina degenhardtii	Holcosus festivus
11	Bachia flavescens	

No.	HERPETOS REGISTRADOS PMA 2014	HERPETOS REGISTRADOS PMA 2021
12	Iguana iguana	
13	Gonatodes albogularis	
14	Bothrops asper	
15	Chelonoidis carbonaria	

Conclusión. Las especies registradas en el Humedal Caracolizal son propias del bosque seco tropical de acuerdo con la revisión de los distintos planes de manejo de los humedales de zonas bajas del departamento (GIZ, 2010, 2015, 2016, 2018, 2019) y se caracterizan por ser tolerantes a la intervención antrópica y por mostrar distribuciones amplias en el país. De acuerdo con la Unión Internacional para la Conservación de la Naturaleza (IUCN) y el Convenio sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora (CITES), en este estudio no se registraron especies amenazadas, sin embargo la especie *Boa constrictor* se encuentra dentro de la categoría II que implica cierta atención sobre el uso de la especie.

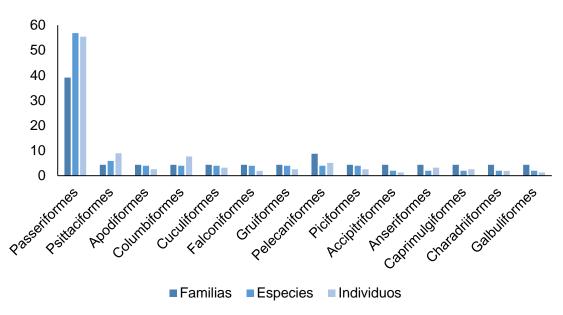
3.2.3.5. Avifauna

Abundancias relativas. Con un esfuerzo de muestreo de 19.5 horas red y 420 minutos de observación a 2021 se registraron 51 especies de aves distribuidas en 23 familias y 14 órdenes (total registros: 157) (Tabla 11, Anexo E).

Tabla 11. Especies registradas en el humedal Caracolizal, municipio de Melgar (Tolima). CE: Categoría ecológica.

ORDEN	FAMILIA	ESPECIE	AB	CE
Anseriformes	Anatidae	Dendrocygna autumnalis	5	IVb
Columbiformes	Columbidae	Leptotila verreauxi	1	II
Columbiformes	Columbidae	Columbina talpacoti	11	III
Cuculiformes	Cuculidae	Crotophaga major	3	II
Cuculiformes	Cuculidae	Coccycua minuta	2	II
Caprimulgiformes	Caprimulgidae	Nyctidromus albicollis	4	II
Apodiformes	Trochilidae	Glaucis hirsutus	2	II
Apodiformes	Trochilidae	Phaethornis anthophilus	1	II
Gruiformes	Rallidae	Porphyrio martinica	3	IVb
Gruiformes	Rallidae	Aramides cajaneus	1	IVa
Charadriiformes	Jacanidae	Jacana jacana	3	IVb
Pelecaniformes	Ardeidae	Butorides striata	2	IVb
Pelecaniformes	Threskiornithidae	Phimosus infuscatus	6	IVb
Accipitriformes	Accipitridae	Rupornis magnirostris	2	Ш
Galbuliformes	Galbulidae	Galbula ruficauda	2	П

ORDEN	FAMILIA	ESPECIE	AB	CE
Piciformes	Picidae	Picumnus olivaceus	2	Ш
Piciformes	Picidae	Melanerpes rubricapillus	2	Ш
Falconiformes	Falconidae	Milvago chimachima	2	Ш
Falconiformes	Falconidae	Falco femoralis	1	Ш
Psittaciformes	Psittacidae	Brotogeris jugularis	3	Ш
Psittaciformes	Psittacidae	Amazona ochrocephala	8	Ш
Psittaciformes	Psittacidae	Forpus conspicillatus	2	Ш
Passeriformes	Thamnophilidae	Thamnophilus doliatus	2	Ш
Passeriformes	Furnariidae	Dendroplex picus	1	Ш
Passeriformes	Furnariidae	Certhiaxis cinnamomeus	4	IVb
Passeriformes	Tyrannidae	Todirostrum cinereum	4	Ш
Passeriformes	Tyrannidae	Elaenia flavogaster	4	Ш
Passeriformes	Tyrannidae	Pitangus sulphuratus	6	Ш
Passeriformes	Tyrannidae	Megarynchus pitangua	5	Ш
Passeriformes	Tyrannidae	Myiodynastes maculatus	1	Ш
Passeriformes	Tyrannidae	Myiozetetes cayanensis	11	Ш
Passeriformes	Tyrannidae	Tyrannus melancholicus	1	Ш
Passeriformes	Tyrannidae	Tyrannus savana	1	Ш
Passeriformes	Tyrannidae	Pyrocephalus rubinus	3	Ш
Passeriformes	Tyrannidae	Fluvicola pica	7	Iva
Passeriformes	Tyrannidae	Arundinicola leucocephala	1	IVb
Passeriformes	Vireonidae	Hylophilus flavipes	3	Ш
Passeriformes	Corvidae	Cyanocorax affinis	1	Ш
Passeriformes	Troglodytidae	Troglodytes aedon	2	Ш
Passeriformes	Troglodytidae	Pheugopedius fasciatoventris	1	lb
Passeriformes	Troglodytidae	Cantorchilus leucotis	1	П
Passeriformes	Turdidae	Turdus leucomelas	1	Ш
Passeriformes	Parulidae	Basileuterus rufifrons	2	П
Passeriformes	Thraupidae	Sicalis flaveola	4	Ш
Passeriformes	Thraupidae	Volatinia jacarina	1	Ш
Passeriformes	Thraupidae	Loriotus luctuosus	1	lb
Passeriformes	Thraupidae	Ramphocelus dimidiatus	2	П
Passeriformes	Thraupidae	Saltator coerulescens	8	П
Passeriformes	Thraupidae	Coereba flaveola	1	П
Passeriformes	Thraupidae	Stilpnia vitriolina	1	П
Passeriformes	Thraupidae	Thraupis episcopus	6	Ш


Fuente: GIZ (2021)

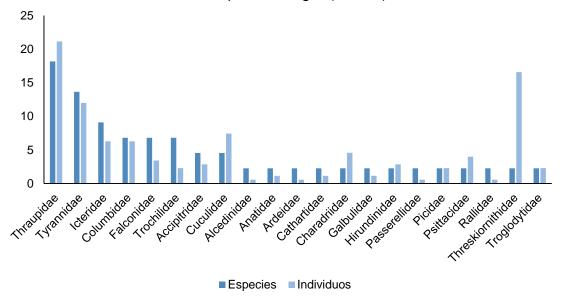
El orden más diverso y abundante fue Passeriformes con nueve familias, 29 especies y 87 registros (Figura 34), seguido respecto al número de familias por Pelecaniformes el cual registró dos; los demás órdenes presentaron una sola familia. Así mismo, teniendo en cuenta el número de especie, el orden Psittaciformes fue el segundo más rico con tres especies, seguido por Apodiformes, Columbiformes, Cuculiformes, Falconiformes, Gruiformes, Pelecaniformes y Piciformes con dos; los demás órdenes registraron una sola especie (Figura 34).

En comparación con los resultados obtenidos por Losada-Prado y Molina-Martínez (2011) (297 especies), en este estudio se encontró el 16.8% de las especies reportadas para el bosque seco tropical del Tolima y el 34% de las especies comúnmente observadas en algunos humedales de zonas bajas del departamento (147 especies) (Pacheco-Vargas et al., 2018). Así mismo, teniendo en cuenta un estudio previo realizado en el humedal, se detectaron 38 especies que habían sido registradas previamente y se incluyeron 13 especies nuevas, completando un total de 91 especies observables dentro del área de estudio.

De acuerdo con autores como Manchado y Peña (2000), Hilty y Brown (2001) y Ricklefs (2012), estos resultados no solo se ajustan a lo reportado para el bosque seco tropical del Tolima (Losada-Prado y Molina-Martínez, 2011), sino también a los patrones de diversidad mundial y neotropical, ya que el orden Passeriformes se posiciona como el más diverso dentro de la clase aves debido a que se compone de especies adaptadas a todos los hábitats. Además, estos resultados coinciden con la información conocida para otros humedales de zonas bajas en el departamento del Tolima como El Burro, La Garcera, La Herreruna, La Moya De Enrique, La Pedregosa, La Zapuna, Albania, Azuceno, La Huaca, Laguna De Coya, Las Garzas, Rio Viejo, Saldañita, Samán, Caracolí, Chicualí, El Silencio, El Toro, Gavilán, Toqui-Toqui, Corinto, El Suizo, entre otros (Grupo de Investigación en Zoología [GIZ], 2010, 2015, 2016, 2018, 2019; Pacheco-Vargas et al., 2018).

Figura 34. Abundancia relativa de familias, especies y registros en los órdenes de aves presentes en el humedal Caracolizal, municipio de Melgar (Tolima).

Fuente: GIZ (2021)


En cuanto al número de especies y registros, las familias con mayor número riqueza y abundancia fueron Tyrannidae (once especies, 28.7% de los registros) y Thraupidae (ocho especies, 15.3% de los registros) (Figura 35, Tabla 11), esto concuerda con lo reportado para América (AOU, 1998) y la región neotropical en donde ambas familias se posicionan entre las más abundantes y diversas (Traylor, 1977) y de hecho Isler y Isler (1987) menciona que su diversidad está dada por el hecho de que dos tercios de sus especies ocurren completamente en la región. Así mismo, ambas familias se registran como las más abundantes a nivel a nivel nacional (Hilty y Brown, 2001), departamental en diferentes humedales ubicados por debajo de los 1000 m sobre el nivel del mar en el Tolima (por ejemplo La Herreruna, La Zapuna, Azuceno, La Huaca, Laguna De Coya, Saldañita, Samán, Chicualí, El Silencio, El Toro, Gavilán, Toqui-Toqui, Corinto y El Suizo) (Grupo de Investigación en Zoología [GIZ], 2010, 2015, 2016, 2018, 2019; Pacheco-Vargas et al., 2018) y dentro de la cuenca del río Sumapaz (Díaz-Rivera y Medina-Potier, 2019) a la cual pertenece el humedal.

Por otro lado, tanto Thraupidae como Tyrannidae son familias muy comunes en tierras intervenidas o destinadas a la agricultura (Hilty y Brown, 2001), ya que la mayor parte de sus especies presentan bajos requerimientos de hábitat en términos de cobertura vegetal y presencia humana, mostrando dietas a base de insectos, semillas y frutas, los cuales constituyen recursos cuantiosos en zonas intervenidas (Corporación Autónoma Regional de Risaralda y Wildlife Conservation Society, 2012), por lo cual su abundancia dentro del humedal es de esperar ya que en el área circundante se registran cultivos de frutales y una notable intervención antrópica.

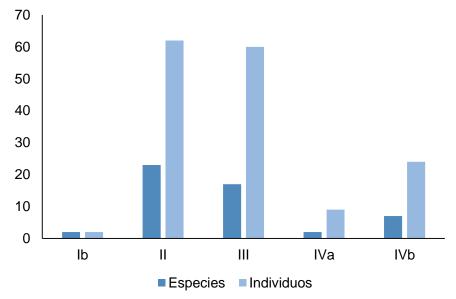
Las especies más abundantes fueron Columbina talpacoti y Myiozetetes cayanensis con 11 registros cada una, seguidas por Amazona ochrocephala y Saltator


coerulescens con ocho registros respectivamente (Figura 36). La abundancia de estas especies se asocia al hecho de que son muy activas y constituyen aves comunes ya sea en lagunas de agua dulce con cobertura arbórea en sus márgenes o en áreas abiertas y semiabiertas con intervención humana (Marcondes-Machado, 1988; Hilty y Brown, 2001). Así mismo, estas especies son altamente gregarias, por lo cual se registran principalmente en parejas o pequeños grupos primariamente mediante las metodologías de observaciones libres o puntos de conteo (Hilty y Brown, 2001).

Figura 35. Abundancia relativa de especies y registros por familia de aves presentes en el humedal Caracolizal, municipio de Melgar (Tolima).

Fuente: GIZ (2021)

Figura 36. Abundancia total de registros por especie de aves en el humedal Caracolizal, municipio de Melgar (Tolima).



Fuente: GIZ (2021)

Categorías ecológicas. Las categorías ecológicas que más especies e individuos registraron en el humedal Caracolizal fueron la II (23 especies, 62 registros) y la III (17 especies, 60 registros), dentro de las cuales se agrupan aquellas especies con alta tolerancia a la intervención humana y bajos requerimientos de hábitat (Stiles y Bohórquez, 2000) (Figura 37).

Como se mencionaba, este resultado coincide con lo observado en el área de estudio y en un trabajo previo realizado en el humedal (GIZ, 2010b), en el cual se estableció que la zona contaba con una cobertura vegetal arbórea importante pese a las afectaciones causadas por la ganadería y demás procesos antrópicos que se desarrollan en sus inmediaciones, por lo cual las especies ampliamente tolerantes y pertenecientes a estas categorías cuentan con un hábitat que les brinda recursos cuantiosos y que favorece su desarrollo.

Figura 37. Número de especies e individuos presentes en el humedal Caracolizal, municipio de Saldaña (Tolima) según su categoría ecológica.

Fuente: GIZ (2021)

Especies de interés.

Especies en categoría IUCN. Al revisar los libros rojos de aves de Colombia (Renjifo et al., 2002; Renjifo et al., 2014) y la lista roja de la IUCN (2021) en el humedal Caracolizal no se reconocieron especies en categorías de amenaza, de modo que todas las especies registradas se localizan en la categoría "preocupación menor" (LC) según la IUCN (Tabla 12).

Especies en apéndices CITES. Del total de especies reportadas, ocho se encuentran dentro del apéndice II y una en el apéndice III del CITES, constituyendo

especies que no están necesariamente amenazadas de extinción pero que podrían estarlo si no se controla su comercio (Roda *et al.*, 2003) (Tabla 12).

Especies migratorias. Con base en las listas de aves elaboradas por Naranjo y Espinel (2009), Naranjo et al. (2012), Avendaño et al. (2017) y Ayerbe (2018), se registraron cuatro especies migratorias dentro del humedal Caracolizal. Empero, según esto autores, todas las especies en cuestión (Tabla 12) presentan poblaciones ya establecidas dentro del territorio nacional, por lo cual probablemente todos los individuos avistados corresponden a especies residentes. Así mismo, la ausencia de especies netamente migratorias está relacionada con el hecho de que durante la época en la cual se realizó el muestreo (julio), estas especies no se hallan en el país ya que su llegada se da a finales de septiembre y regresan a su zona de reproducción a principios de marzo (Ocampo-Peñuela, 2010)..

Especies endémicas. Con base en lo reportado por Chaparro-Herrera *et al.* (2013), Avendaño *et al.* (2017) y Ayerbe (2018), en el humedal Caracolizal se registraron cuatro especies casi *endémicas: Forpus conspicillatus, Cyanocorax affinis, Pheugopedius fasciatoventris, Ramphocelus dimidiatus* y *Stilpnia vitriolina* (Tabla 12).

Tabla 12. Especies de aves reportadas dentro de alguna categoría CITES y/o IUCN y registradas en el humedal Caracolizal, municipio de Saldaña (Tolima).

ORDEN	FAMILIA	ESPECIE	CITES	IUCN	Estatus
Anseriformes	Anatidae	Dendrocygna autumnalis	Ш	LC	R
Cuculiformes	Cuculidae	Crotophaga major	NP	LC	R-MI
Apodiformes	Trochilidae	Glaucis hirsutus	II	LC	R
Apodiformes	Trochilidae	Phaethornis anthophilus	II	LC	R
Accipitriformes	Accipitridae	Rupornis magnirostris	II	LC	R
Falconiformes	Falconidae	Milvago chimachima	II	LC	R
Falconiformes	Falconidae	Falco femoralis	II	LC	R
Psittaciformes	Psittacidae	Brotogeris jugularis	II	LC	R
Psittaciformes	Psittacidae	Amazona ochrocephala	II	LC	R
Psittaciformes	Psittacidae	Forpus conspicillatus	II	LC	R-CE
Passeriformes	Tyrannidae	Myiodynastes maculatus	NP	LC	R-Ma
Passeriformes	Tyrannidae	Tyrannus melancholicus	NP	LC	R-Ma
Passeriformes	Tyrannidae	Tyrannus savana	NP	LC	R-Mb-Ma
Passeriformes	Corvidae	Cyanocorax affinis	NP	LC	R-CE
Passeriformes	Troglodytidae	Pheugopedius fasciatoventris	NP	LC	R-CE
Passeriformes	Thraupidae	Ramphocelus dimidiatus	NP	LC	R-CE
Passeriformes	Thraupidae	Stilpnia vitriolina	NP	LC	R-CE

Fuente: GIZ (2021)

Al comparar la información de especies reportadas en el PMA 2014 con el ajuste 2021 se registra tan solo 51 especies, actualmente. Esto significa una reducción del 35% de la riqueza de aves en el humedal.

Especies de aves identificadas en el PMA 2014 y en el PMA 2021

No.	AVES REGISTRADAS PMA 2014	AVES REGISTRADAS PMA 2021
1	Dendrocygna autumnalis	Dendrocygna autumnalis
2	Colinus cristatus	Leptotila verreauxi
3	Zenaida auriculata	Columbina talpacoti
4	Columbina talpacoti	Crotophaga major
5	Crotophaga major	Coccycua minuta
6	Crotophaga ani	Nyctidromus albicollis
7	Glaucis hirsutus	Glaucis hirsutus
8	Phaethornis anthophilus	Phaethornis anthophilus
9	Anthracothorax nigricollis	Porphyrio martinica
10	Chalybura buffonii	Aramides cajaneus
11	Amazilia tzacatl	Jacana jacana
12	Porphyrio martinica	Butorides striata
13	Laterallus albigularis	Phimosus infuscatus
14	Aramides cajaneus	Rupornis magnirostris
15	Vanellus chilensis	Galbula ruficauda
16	Jacana jacana	Picumnus olivaceus
17	Butorides striata	Melanerpes rubricapillus
18	Bubulcus ibis	Milvago chimachima
19	Phimosus infuscatus	Falco femoralis
20	Coragyps atratus	Brotogeris jugularis
21	Cathartes aura	Amazona ochrocephala
22	Rupornis magnirostris	Forpus conspicillatus
23	Megascops choliba	Thamnophilus doliatus
24	Galbula ruficauda	Dendroplex picus
25	Picumnus olivaceus	Certhiaxis cinnamomeus
26	Melanerpes rubricapillus	Todirostrum cinereum
27	Colaptes punctigula	Elaenia flavogaster
28	Herpetotheres cachinnans	Pitangus sulphuratus
29	Milvago chimachima	Megarynchus pitangua
30	Brotogeris jugularis	Myiodynastes maculatus
31	Amazona ochrocephala	Myiozetetes cayanensis
32	Forpus conspicillatus	Tyrannus melancholicus
33	Thamnophilus doliatus	Tyrannus savana

No.	AVES REGISTRADAS PMA 2014	AVES REGISTRADAS PMA 2021
34	Thamnophilus atrinucha	Pyrocephalus rubinus
35	Cercomacra nigricans	Fluvicola pica
36	Dendroplex picus	Arundinicola leucocephala
37	Certhiaxis cinnamomeus	Hylophilus flavipes
38	Poecilotriccus sylvia	Cyanocorax affinis
39	Todirostrum cinereum	Troglodytes aedon
40	Zimmerius chrysops	Pheugopedius fasciatoventris
41	Camptostoma obsoletum	Cantorchilus leucotis
42	Elaenia flavogaster	Turdus leucomelas
43	Pitangus sulphuratus	Basileuterus rufifrons
44	Pitangus lictor	Sicalis flaveola
45	Myiozetetes cayanensis	Volatinia jacarina
46	Myiozetetes similis	Loriotus luctuosus
47	Tyrannus melancholicus	Ramphocelus dimidiatus
48	Rhytipterna holerythra	Saltator coerulescens
49	Pyrocephalus rubinus	Coereba flaveola
50	Fluvicola pica	Stilpnia vitriolina
51	Hylophilus flavipes	Thraupis episcopus
52	Cyanocorax affinis	
53	Stelgidopteryx ruficollis	
54	Troglodytes aedon	
55	Pheugopedius fasciatoventris	
56	Henicorhina leucosticta	
57	Polioptila plumbea	
58	Turdus ignobilis	
59	Euphonia concinna	
60	Euphonia laniirostris	
61	Arremonops conirostris	
62	Leistes militaris	
63	Molothrus bonariensis	
64	Chrysomus icterocephalus	
65	Myiothlypis fulvicauda	
66	Sicalis flaveola	
67	Sicalis luteola	
68	Volatinia jacarina	
69	Ramphocelus dimidiatus	
70	Sporophila angolensis	
71	Sporophila nigricollis	

No.	AVES REGISTRADAS PMA 2014	AVES REGISTRADAS PMA 2021
72	Sporophila schistacea	
73	Saltator coerulescens	
74	Saltator striatipectus	
75	Coereba flaveola	
76	Asemospiza obscura	
77	Thraupis episcopus	
78	Thraupis palmarum	

Fuente: GIZ, (2021).

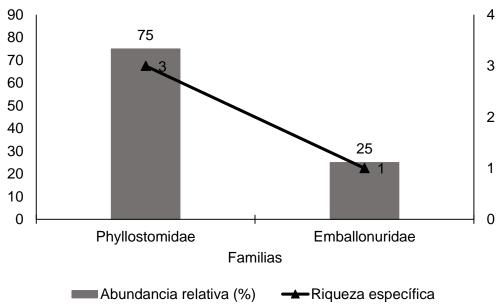
Conclusión. La avifauna registrada en el Humedal Caracolizal, estuvo constituida principalmente por especies de las familias Thraupidae y Tyrannidae, las cuales en su mayoría corresponden a especies con alta tolerancia a la intervención humana y bajos requerimientos de hábitat, ajuntándose a los reportes existentes para el Neotrópico, para el bosque seco tropical y distintos humedales del departamento. Se destaca el registro de nueve especies CITES y cinco especies casi endémicas.

3.2.3.6. Mastofauna

Se registraron un total de cuatro especies de mamíferos (Tabla 13, Anexo F), tres especies de mamíferos voladores y una especie de mamífero mediano. En cuanto a los mamíferos voladores, se registraron cuatro individuos del orden Chiroptera, pertenecientes a dos familias, dos subfamilias tres géneros y tres especies, encontrando que la familia con mayor representatividad fue Phyllostomidae con un 75% (3 individuos), seguida de Emballonuridae con 25% (1 individuo) (Figura 38).

Tabla 13. Mamíferos voladores registrados en el humedal Caracolizal, Melgar (Tolima).

Familia	Subfamilia	Especie	Número de individuos	AB %
Emballonuridae	Emballonurinae	Saccopteryx canescens Thomas, 1901	1	20
Phyllostomidae	Stenodermatinae	Artibeus planirostris (Spix, 1823)	1	20
Phyllostomidae	Stenodermatinae	Sturnira giannae Velazco & Patterson, 2019	2	40
Didelphidae	Didelphinae	Didelphis marsupialis Linnaeus, 1758	1	20


Fuente: GIZ, 2021.

El orden Chiroptera es uno de los clados más exitosos y diversos de los vertebrados en el planeta, presentando una amplia distribución en todo el mundo con excepción del Ártico y la Antártida, exhibiendo su mayor abundancia y diversidad en la región Neotropical (Echavarría, 2018; Zegarra, 2019). Esta diversidad se debe a la evolución de una gran diversidad de formas que les periten ocupar la mayoría de nichos (Zegarra, 2019).

Así mismo, la alta representatividad de especies e individuos reportados para la familia Phyllostomidae, puede estar relacionada con su abundancia en el neotrópico, debido a su gran capacidad adaptativa y amplio rango de recursos alimenticios, en lo que se pueden encontrar hematófagos, insectívoros, carnívoros, omnívoros, nectarívoros, palinivoros y frugívoros (Durán y Canchila, 2015; Wetterer et al. 2000).

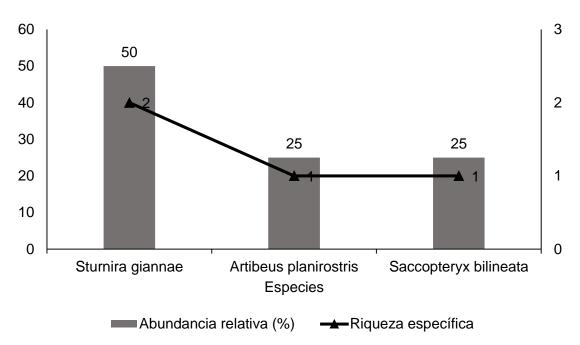

De las tres especies reportadas, la mayor abundancia la registro Sturnira giannae con un 50% (2 individuos), seguida de Artibeus planirostris y Saccopteryx bilineata con un 25% (1 individuo cada una) (Figura 39). La abundancia presentada por Sturnira giannae, puede deberse principalmente a su condición de especie generalista, siendo más resistente y tolerante a la transformación de los ecosistemas, debido a su plasticidad ecológica y adaptabilidad (Asher, 2009; Castro y Galindo, 2012; Bejarano et al. 2007; Galindo, 2004). Por otro lado, la presencia de Artibeus planirostris que también es un murciélago frugívoro, común e importante dispersor de semillas, se ha encontrado en una multitud de hábitats diferentes, desde pastizales abiertos con árboles dispersos hasta parches densamente boscosos, en donde aprovecha no solo el recurso de los frutos sino también el polen, néctar e insectos, lo que la hace una especie una especie vágil con gran plasticidad para el uso del hábitat (Silveira et al. 2018). De igual manera, el insectívoro Saccopteryx bilineata, es una especie con amplia distribución geográfica, que actúa como predador de insectos nocturnos, siendo considerada un excelente controlador biológico (Bracamonte, 2013; Ramírez et al. 2015).

Figura 38. Abundancia relativa y riqueza especifica de las especies registradas en el humedal Caracolizal, Melgar (Tolima).

Fuente: GIZ, 2021.

Figura 39. Abundancia relativa y riqueza especifica de las especies registradas en el humedal Carcolizal, Melgar (Tolima).

Fuente: GIZ, 2021.

Con respecto a los mamíferos medianos – grandes es de resaltar el reporte de *Didelphis marsupialis*, esta presencia puede estar relacionada con su capacidad adaptativa, siendo uno de los mamíferos más abundantes y ubicuos en gran parte del Neotrópico, encontrándose en muchos hábitats diferentes a lo largo de su área de distribución, excepto en las regiones áridas (Adler et al. 1997).

Especies de interés. Todas las especies registradas son nocturnas y voladoras, condiciones que los hacen animales exitosos, pues son los únicos mamíferos que pueden volar y que además han desarrollado diversas adaptaciones para hacerlo, tanto morfológicas como funcionales, tal es el caso de la ecolocalización y la sincronización de la respiración (Palencia, 2018). Por otro lado, se destaca la presencia de especies frugívoras, lo que resulta de gran importancia para la conservación de los bosques en la zona de estudio, ya que éstos constituyen una fuente importante para mantenimiento de las dinámicas de muchos ecosistemas a través de los procesos de dispersión de semillas, incrementando la tasa de germinación y la probabilidad del establecimiento de plántulas, disminuyendo la endogamia y favoreciendo el intercambio genético entre poblaciones de especies vegetales (Echavarría et al. 2018; Novoa et al. 2011). De igual manera, murciélagos insectívoros como *Saccopteryx bilineata*, son considerados como los mayores depredadores de insectos nocturnos, contribuyendo de esta manera a mantener un equilibrio en las poblaciones de insectos (Castaño y Botero, 2013).

Especies en categoría de amenaza. Ninguna de las especies registradas se encuentra catalogada como amenazada a nivel nacional o global (Tabla 14).

Especies en apéndices CITES. Ninguna de las especies registradas en el humedal se encuentra incluida en los apéndices que regulan el comercio internacional de especies amenazadas (Tabla 14).

Tabla 14. Aspectos ecológicos y estado de conservación de los mamíferos

registrados en el humedal Caracolizal, Melgar (Tolima).

Especie	Gremio trófico	Hábito de vida	Periodo de actividad	IUCN	CITES	Resolución 1912
Mamíferos voladores						
Artibeus planirostris	Frugívoro	Volador	Nocturno	LC	NA	NA
Saccopteryx bilineata	Insectivor o	Volador	Nocturno	LC	NA	NA
Sturnira giannae	Frugívoro	Volador	Nocturno	LC	NA	NA
Mamíferos medianos - grandes						
Didelphis marsupialis	Omnívoro	Terrestr e, Semi arbórea	Nocturna	LC	NA	NA

Fuente: GIZ, 2021.

Conclusión

La mastofauna en el Humedal Caracolizal se compone principalmente de mamíferos voladores, animales indispensables que participan en el desarrollo de diferentes procesos ecológicos que benefician a los ecosistemas, como la dispersión de semillas a larga distancia en áreas abiertas donde otros dispersores no llegan, jugando un papel fundamental en la reproducción vegetal o el control biológico de potenciales plagas de insectos. Sin embargo, esta población a pesar de tolerar la perturbación, se está viendo enormemente afectada por la deforestación. Por lo anterior, se hace necesaria la existencia y conservación de una heterogeneidad estructural en la vegetación a lo largo del paisaje que permita el potencial desarrollo sucesional del ecosistema y el cuidado de este tipo de fauna considerada fundamental en el mantenimiento del mismo.

Plan de Manejo Ambiental (PMA) Humedal Caracolizal

CAPITULO 4. COMPONENTE CALIDAD DEL AGUA

4. CALIDAD DEL AGUA

4.1. MARCO CONCEPTUAL

La caracterización limnológica de un ecosistema acuático está orientada a la determinación de las características fisicoquímicas de las comunidades asociadas a ellas, debido a que las condiciones físicas y químicas del agua regulan la distribución y abundancia de los organismos que habitan allí (Roldán, 1996). En los últimos años estos estudios se han desarrollado con un enfoque integrador que permita evaluar las interacciones que estos parámetros mantienen con los ecosistemas y entender el funcionamiento global de los ríos como sistemas ecológicos (Segnini & Chacón, 2005).

Por esta razón se determinó que los estudios limnológicos en estos ecosistemas deben ser realizados con una perspectiva a escala de cuenca, lo que permitirá relacionar las características biológicas de los ríos con los principales factores de perturbación antrópicos, adicionalmente deben estar orientados hacia la comprensión de la biodiversidad y determinar la utilidad de los modelos existentes en las zonas templadas para describir la estructura y función de los ríos tropicales (Segnini & Chacón, 2005). Desde cualquier punto de vista físico y químico, en cualquier estudio sobre caracterización de aguas, es necesario contar con un programa de muestreo cuidadosamente diseñado y supervisado en los diferentes cuerpos de agua seleccionados para su estudio. Este diseño estará en función de los objetivos del estudio o tipo de caracterización, es decir que se debe programar el muestreo de acuerdo a las variables de carácter físico y químico a medir (Ruíz, 2002).

Los criterios de calidad de agua y las medidas de integridad biológica forman parte de la determinación de la integridad ecológica del sistema acuático. La calidad del agua se puede determinar mediante el análisis fisicoquímico, junto con los bacteriológicos y biológicos. Dentro de los primeros se incluyen la temperatura ambiental y del agua, el oxígeno disuelto, el pH, el nitrógeno, el fósforo, la alcalinidad, la dureza, los iones totales disueltos y los contaminantes industriales y domésticos que pueda tener, conductividad eléctrica, caudal, nitritos, nitratos, DBO, DQO, entre otros (Ruíz, 2002).

Factores fisicoquímicos y bacteriológicos de los ecosistemas acuáticos.

Temperatura: La radiación solar determina la calidad y cantidad de luz y además afecta la temperatura del agua (Roldán, 2003). Las propiedades lumínicas y calóricas de un cuerpo de agua están influidas por el clima y la topografía tanto como por las características del propio cuerpo de agua: su composición química, suspensión de sedimentos y su productividad de algas. La temperatura del agua regula en forma directa la concentración de oxígeno, la tasa metabólica de los organismos acuáticos y los procesos vitales asociados como el crecimiento, la maduración y la reproducción.

Oxígeno disuelto: El oxígeno disuelto es uno de los indicadores más importantes de la calidad del agua. Sólo tiene valor si se mide con la temperatura, para poder así establecer el porcentaje de saturación. Las fuentes de oxígeno son la precipitación pluvial, la difusión del aire en el agua, la fotosíntesis, los afluentes y la agitación moderada. La solubilidad del oxígeno en el agua depende de la temperatura, la presión atmosférica, la salinidad, la contaminación, la altitud, las condiciones meteorológicas y la presión hidrostática. (Roldán & Ramírez, 2008). En un cuerpo de agua se produce y a la vez se consume oxígeno. La producción de oxígeno está relacionada con la fotosíntesis, mientras el consumo dependerá de la respiración, descomposición de sustancias orgánicas y otras reacciones químicas.

Porcentaje de Saturación de Oxigeno (% O₂): Es el porcentaje máximo de oxígeno que puede disolverse en el agua a una presión y temperatura determinadas (Roldán & Ramírez, 2008). Por ejemplo, se dice que el agua está saturada en un 100% si contiene la cantidad máxima de oxígeno a esa temperatura. Una muestra de agua que está saturada en un 50% solamente tiene la mitad de la cantidad de oxígeno que potencialmente podría tener a esa temperatura. A veces, el agua se supersatura con oxígeno debido a que el agua se mueve rápidamente. Esto generalmente dura un período corto de tiempo, pero puede ser dañino para los peces y otros organismos acuáticos. Los valores del porcentaje de saturación del oxígeno disuelto de 80 a 120% se consideran excelentes y los valores menores al 60% o superiores a 125% se consideran malos (Perdomo & Gómez, 2000).

Demanda Biológica de Oxigeno (DBO5): Es una medida de la concentración de oxígeno usada por los microorganismos para degradar y estabilizar la materia orgánica biodegradable o materia carbonácea en condiciones aérobicas en 5 días a 20°C. En general, el principal factor de consumo de oxígeno libre es la oxidación de la materia orgánica por respiración a causa de microorganismos descomponedores (bacterias heterotróficas aeróbicas) (Roldán & Ramírez, 2008). Demanda Química de Oxigeno (DQO): Es el parámetro analítico de contaminación que mide el contenido de materia orgánica en una muestra de agua mediante oxidación química. Permite determinar las condiciones de biodegrabilidad, así como la eficacia de las plantas de tratamiento (Roldán & Ramírez, 2008).

pH: Es una abreviatura para representar potencial de hidrogeniones (H+) e indica la concentración de estos iones en el agua. El pH expresa la intensidad de la condición ácida o básica de una solución, este parámetro está íntimamente relacionado con los cambios de acidez y basicidad y con la alcalinidad. La notación pH expresa la intensidad de la condición ácida y básica de una solución. Expresa además la actividad del ion hidrógeno (Roldán & Ramírez, 2008).

Conductividad Eléctrica: Es una medida de la propiedad que poseen las soluciones acuosas para conducir la corriente eléctrica. Esta propiedad depende de la presencia de iones, su concentración, movilidad, valencia y la temperatura de medición. La variación de la conductividad proporciona información acerca de la productividad primaria y descomposición de la materia orgánica, e igualmente contribuye a la detección de fuentes de contaminación, a la evaluación de la actitud

del agua para riego y a la evaluación de la naturaleza geoquímica del terreno (Faña, 2000).

Turbidez: Es una expresión de la propiedad óptica que origina que la luz se disperse y absorba en vez de transmitirse en línea recta a través de la muestra. Es producida por materiales en suspensión como arcilla, limo, materia orgánica e inorgánica, organismos planctónicos y demás microorganismos. Incide directamente en la productividad y el flujo de energía dentro del ecosistema, la turbiedad define el grado de opacidad producido en el agua por la materia particulada en suspensión (Roldán, 2003). Este parámetro tiene una gran importancia sanitaria, ya que refleja una aproximación del contenido de materias coloidales, minerales u orgánicas, por lo que puede ser indicio de contaminación.

Dureza: La dureza del agua está definida por la cantidad de iones de calcio y magnesio presentes en ella, evaluados como carbonato de calcio y magnesio. Las aguas con bajas durezas se denominan blandas y biológicamente son poco productivas, por lo contrarío las aguas con dureza elevada son muy productivas (Roldán, 2003).

Cloruros: La presencia de cloruros en las aguas naturales se atribuye a la disolución de depósitos minerales de sal gema, contaminación proveniente de diversos efluentes de la actividad industrial, aguas excedentarias de riegos agrícolas y sobretodo de las minas de sales potásicas (Roldan & Ramírez, 2008).

Nitrógeno, Nitritos y Nitratos: El nitrógeno es un elemento esencial para el crecimiento de algas y causa un aumento en la demanda de oxígeno al ser oxidado por bacterias reduciendo por ende los niveles de este. Las diferentes formas del nitrógeno son importantes en determinar para establecer el tiempo transcurrido desde la polución de un cuerpo de agua (Roldán, 2003).

Fosforo y fosfatos: El fósforo permite la formación de biomasa, la cual requiere un aumento de la demanda biológica de oxígeno para su oxidación aerobia, además de los procesos de eutrofización y consecuentemente crecimiento de fitoplancton. En forma de ortofosfato es nutriente de organismos fotosintetizadores y por tanto un componente limitante para el desarrollo de las comunidades, su determinación es necesaria para estudios de polución de ríos, así como en procesos químicos y biológicos de purificación y tratamiento de aguas (Roldán, 2003).

Sólidos suspendidos: Los sólidos suspendidos, tales como limo, arena y virus, son generalmente responsables de impurezas visibles. La materia suspendida consiste en partículas muy pequeñas, que no se pueden quitar por medio de deposición.

Sólidos totales: Se define el contenido de sólidos totales como la materia que se obtiene como residuo después de someter el agua a un proceso de evaporación entre 103-105°C. Los sólidos totales incluyen disueltos y suspendidos, los sólidos disueltos son aquellos que quedan después del secado de una muestra de agua a

103-105°C previa filtración de las partículas mayores a 1.2 μm (Metcalf & Heddy, 1981).

Coliformes Totales y Fecales: El análisis bacteriológico es vital en la prevención de epidemias como resultado de la contaminación de agua, el ensayo se basa en que todas las aguas contaminadas por aguas residuales son potencialmente peligrosas, por tanto en control sanitario se realiza para determinar la presencia de contaminación fecal. La determinación de la presencia del grupo coliformes se constituye en un indicio de polución así como la eficiencia y la purificación y potabilidad del agua (Roldán, 2003).

INDICE DE CALIDAD DE AGUA (ICA).

Un índice de calidad de agua consiste básicamente en una expresión simple de una combinación más o menos compleja de un número de parámetros, el cual sirve como representación de la calidad del agua. El índice puede ser representado por un número, un rango, una descripción verbal, un símbolo o incluso, un color (Fernández et al, 2003). Si el diseño del ICA es adecuado, el valor arrojado puede ser representativo e indicativo del nivel de contaminación y comparable con otros para enmarcar rangos y detectar tendencias. Estos índices facilitan el manejo de datos, evitan que las fluctuaciones en las mediciones invisibilicen las tendencias ambientales y permiten comunicar, en forma simple y veraz, la condición del agua para un uso deseado o efectuar comparaciones temporales y espaciales entre cuerpos de agua (House, 1990; Alberti & Parker, 1991). Por lo tanto, resultan útiles o accesibles para las autoridades políticas y el público en general (Pérez & Rodríguez, 2008).

El Índice de Calidad Ambiental (ICA) o WQI por sus siglas en inglés (Water Quality Index) mide la calidad fisicoquímica del agua en una escala de 0 a 100 (Tabla 15), donde a mayor valor mejor es la calidad del recurso, este valor se refiere principalmente para potabilización. Es el índice de uso más extensivo en los trabajos de este tipo a nivel mundial con ciertas restricciones en Europa y fue creado por la NSF (National Sanitation Foundation), entidad gubernamental de los Estado Unidos. Para su empleo se toma en cuenta los valores de 9 variables: oxígeno disuelto, coliformes fecales, pH, DQO, temperatura del agua fósforo total, nitratos, turbiedad y sólidos totales reunidos en una suma lineal ponderada.

Tabla 15. Valores de clasificación de Calidad del agua según el índice ICA.

CALIDAD	RANGO	COLOR
Excelente	91-100	
Buena	71-90	
Media	51-70	
Mala	26-50	
Muy mala	0-25	

Fuente: Adaptado de Ramírez y Viña, 1998

4.2. METODOLOGÍA

Métodos de Campo: Se registró in situ la temperatura del agua, también se colectaron muestras para evaluar otros parámetros ex situ:

- Parámetros Fisicoquímicos. Las muestras fueron colectadas en frascos plásticos con capacidad de 1000 ml, superficialmente y en contra corriente. Fueron debidamente rotuladas y preservadas para su transporte a la Universidad del Tolima (Figura 40)
- Parámetros Bacteriológicos. Se tomaron las muestras de agua en frascos de vidrio esterilizados con capacidad para 600 ml, superficialmente y en contra corriente. Fueron debidamente rotuladas y preservadas para su transporte a la Universidad del Tolima (Figura 40).

Figura 40. Medición de variables fisicoquímicas y toma de muestras in situ.

Fuente: GIZ, (2014).

Métodos de Laboratorio: la evaluación de los parámetros fisicoquímicos y bacteriológicos fue realizada en el Laboratorio de Servicios de Extensión en Análisis Químico LASEREX (Universidad del Tolima); donde se determinaron Coliformes Fecales (UFC/100ml) y Coliformes Totales (UFC/100ml) y otros parámetros como: pH (Unidades de pH), Conductividad Eléctrica (μS/CM), Oxígeno Disuelto (mgO₂/L), Porcentaje de Saturación de Oxígeno (% SAT.O₂), Turbiedad (NTU), Alcalinidad Total y Dureza (mgCaCO₃/L), Cloruros (mg Cl/L), Nitratos (mgNO₃/L), Fosfatos (mg PO4/L), Fósforo total (mg P/L), Sólidos suspendidos y Sólidos Totales (mg/L), DBO5 y DQO (mgO₂/L).

4.3. ANÁLISIS DE RESULTADOS

Los valores de los parámetros fisicoquímicos y bacteriológicos evaluados a 2014 se registran en la Tabla 16. Se registró un pH del agua de 6,84 unidades valor próximo

a la neutralidad, lo cual es importante para el desarrollo de organismos en el cuerpo de agua, los cuales prefieren un rango entre 6.6 y 8 Unidades (Roldan, 2003).

La conductividad eléctrica registro un valor de 199.6 µS/cm, en los cuerpos de agua lenticos presentan altos valores de este parámetro, pues recoge la mayor escorrentía, incrementando el contenido de iones en el agua (Roldán & Ramírez, 2008); por tal razón los humedales de zonas bajas posiblemente presentan valores mayores de conductividad.

Tabla 16. Resultado de los parámetros fisicoquímicos y bacteriológicos evaluados en el humedal Caracolizal.

Parámetro	Unidades	Humedal Caracolizal	
pН	Unidades	6.84	
Conductividad eléctrica	μS/cm	199.6	
Turbiedad	UNT	17	
Alcalinidad Total	mg CaCO ₃ /L	42.2	
Dureza	mg CaCO ₃ /L	37.6	
Cloruros	mg Cl/L	6	
Nitratos	mg NO ₃ /L	1.70	
Fosfatos	mg PO ₄ /L	0.74	
Solidos Suspendidos.	mg/L	23	
Solidos Totales	mg/L	195	
DQO	mg O₂/L	53.2	

Fuente: GIZ, (2014).

La Turbiedad incide directamente en la productividad y el flujo de energía dentro del ecosistema (Roldan, 1992), el humedal registro una turbiedad baja con un valor de 17 UNT. Así mismo, registro un valor de solidos totales de 195 mg/L y de 23 mg/L para solidos suspendidos.

El valor de la DQO fue 53.2 mgO₂/L, siendo un valor alto que puede contribuir a la disminución de la capacidad de depuración de las fuentes hídricas, disminución del oxígeno disuelto, salinización de los suelos, y pérdida de la biodiversidad acuática y calidad del uso (Beltrán & Trujillo, 1999).

En las zonas bajas el valor de los nutrientes aumenta considerablemente, por el arrastre de los sedimentos a causa de la lluvias en los suelos erosionados y del vertimiento de contaminantes domésticos e industriales (Roldán & Ramírez, 2008). El humedal registro un valor de nitratos de 1.70 mg NO₃/L y de fosfatos de 0,74 mg PO₄/L.

Los cloruros en el agua están representados por lo regular en forma de cloruro de sodio, por lo tanto estos expresan en gran parte la salinidad (Roldán & Ramírez, 2008); el humedal registro una baja salinidad con un valor 6 mg Cl/L. En Cuanto a

la alcalinidad registro un valor de 42.2 mg CaCO₃/L y una dureza suave con 37.6 mg CaCO₃/L.

El índice de calidad de aguas ICA señala que el humedal registro una calidad media (Tabla 17) indicando procesos de intervención antrópica: descargas urbanas, agropecuarias, industriales, dragados, remoción de tierras, deforestación, cambios en la escorrentía, entre otros (Ramírez & Viña, 1998), que pueden poner en riesgo el establecimiento de la fauna y flora acuática.

Tabla 17. Índice de calidad de agua (ICA) para el humedal Caracolizal.

HUMEDAL	ICA	CALIDAD	
Caracolizal	64	Media	

Fuente: GIZ, (2014).

El Humedal Caracolizal registro una calidad de agua media a través del índice ICA, evidenciando procesos de intervención antrópica. Por lo tanto se hace necesario diseñar estrategias de conservación que permitan mitigar esta intervención, para lograr mejorar y mantener una buena calidad del agua del humedal.

Pian de Manejo Ambientai (PMA) Humedai Caracolizai
CAPITULO 5. VALORES DE USO Y LOS SERVICIOS ECOSISTEMICOS DEL
HUMEDAL

5. VALORES DE USO Y LOS SERVICIOS ECOSISTEMICOS DEL HUMEDAL.

5.1. INTRODUCCIÓN

La apropiación de la información socioeconómica y cultural existente del área por parte del equipo de trabajo es necesaria para conocer sobre los actores estratégicos, como un paso previo y definitivo a un proceso de acercamiento y concertación sobre procesos de conservación. Esto permite de igual forma tener claro los antecedentes y las dinámicas de los diferentes intereses e intervenciones de los actores en torno a las áreas objeto de estudio, para incorporar en instancias regionales y locales las propuestas de conservación (Orjuela, 2005).

Se plantea un esfuerzo multidimensional y pluralista por comprender en profundidad los vínculos culturales con la naturaleza y el territorio de las personas que integran las comunidades locales tolimenses, partiendo de su percepción sobre la medida en que determinan su bienestar material e inmaterial y condicionan su comportamiento ambiental. Se trata de desentrañar los valores surgidos del conocimiento ecológico que maneja la población local, fruto de la experiencia y la tradición cultural, en la medida en que se establecen relaciones particulares de cada grupo social con su ambiente. En su complejidad, estos valores están detrás de las actitudes individuales y colectivas respecto a la conservación de la naturaleza, y constituyen el fundamento relacional (Chan et al., 2016) sobre el que se forjan las respuestas colectivas en materia de gestión y conservación de la naturaleza y el paisaje, en las distintas esferas de gobernanza (Binder et al., 2013; Petrosillo et al., 2015; Qiu et al., 2018; Bidegain et al., 2019). Se aplicará en cada una de las áreas de estudio una encuesta que permita determinar, cuales servicios de los ecosistemas son percibidos y priorizados por las comunidades.

5.2. METODOLOGÍA

Se realizó una salida de campo al humedal Caracolizal para la aplicación de una encuesta semiestructurada (Anexo G), diseñada para la toma de información necesaria para determinar los valores de uso percibidos por los pobladores del área de estudio.

5.3. RESULTADOS

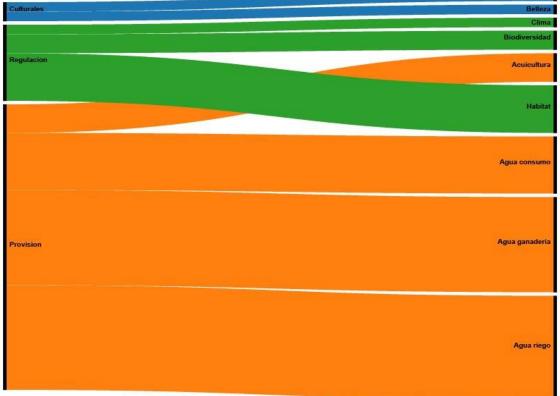
Al periodo 2021 se realizaron 17 encuestas, 15 de ellas a residentes de la vereda Chimbí del municipio de Melgar y 2 en la Finca el Danubio. La población encuestada se caracteriza porque para el 70,58% de ellos sus padres o abuelos son de la zona, por lo que se presenta un arraigo familiar al territorio, mientras que el 29,41% no lo posee. En cuanto a género, el 94,12% de los encuestados fueron hombres y el 5,88% mujeres. El rango de edad de las personas encuestadas en mayor proporción se encuentra entre los 20 a 39 años (47,05%), seguido por el rango de 51 a 60 años (29,41%) y por último, de 41 a 50 años (23,52%)

En relación al nivel de estudios, el 47,1 % corresponde a los grados primaria y bachillerato (respectivamente) y el 5,88 % universitario. El 58,82% de estas personas se identifican como agricultores, seguidos por obreros (17,65%) y demás ocupaciones como amas de casa, cocineras, capataz, mayordomo y estudiantes (5,88% respectivamente). El 88,24 % de las personas encuestadas perciben menos de 830.000 pesos de ingresos mensuales, mientras que el 11,76% restante percibe ingresos entre 831.000 y 1.630.000 pesos al mes.

La población encuestada no hace parte de ninguna asociación, no se encuentran relacionados con temas ambientales o de conservación y en cuanto a actitudes ambientales como la separación de basuras el 64,71% de los encuestados a menudo, el 17,65 nunca, el 11,76 siempre y el 5,88% rara vez. Los materiales que frecuentemente son separados corresponden a envases (76,47%) y pilas (11,6%). Es importante resaltar que más del 70% de los encuestados se encuentra en disposición de realizar acciones de separación en la fuente, relacionado principalmente con los desechos de materiales relacionados con la agricultura como envases.

En cuanto al vínculo de estas personas con el Humedal Caracolizal, la mayor relación corresponde a la presencia de agua, plantas y animales, en cuanto a sensaciones que se relacionan con los servicios de provisión, que se identifican por el uso directo del paisaje, mientras que sensaciones como la alegría, belleza comodidad, paz y fluidez se relaciona con servicios culturales percibidos por la experiencia del paisaje, en términos emocionales (Figura 41).

Figura 41. Emociones y/o sensaciones que se asocian a la presencia del humedal Carazolizal.



Fuente: GIZ, 2021.

En cuanto a la identificación de servicios, los de provisión en particular hacen referencia a la oferta hídrica relacionada con el agua de consumo, riego y ganadería, en menor proporción el uso del humedal para actividades relacionadas con la acuicultura (Figura 42). De los servicios de regulación se identifican la regulación del clima, la oferta de hábitat para plantas y animales y su biodiversidad asociada. Por último, entre los servicios culturales se identifican el descanso y la belleza escénica, además de ser considerado un sitio para trabajar. El 70,59% de la población encuestada considera que los servicios que presta el ecosistema de humedal influencian de manera positiva el bienestar humano relacionados por un lado con su concepción como fuente de provisión de agua, provisión de alimento y considerado como un espacio de trabajo relacionado con el mantenimiento de la ganadería, la pesca y acuicultura. Por el otro, en relación con servicios culturales como la conexión con la naturaleza, lugar de esparcimiento, de tranquilidad y belleza. Por último, el 5,88% considera que no recibe ningún beneficio de los humedales.

Figura 42. Servicios de los ecosistemas identificados por las personas entrevistadas en el humedal Caracolizal.

Descanso
Belleza
Clima
Biodiversidad

Fuente: GIZ, 2021.

Al plantear si se desmejoran las condiciones del humedal los beneficios ambientales con mayores afectaciones corresponden a la reducción significativa del espejo de agua, lo que impediría su uso para el consumo y la ganadería principalmente. Por último, consideran que se perdería el hábitat para la biodiversidad.

En relación con la disposición de las personas para la conservación del humedal Caracolizal, el 82,35 % de los encuestados estarían dispuestos a contribuir de alguna manera a su conservación, mientras que el 17,65% opinan que no están dispuestos a hacerlo. El 82,35 % de los encuestados estarían dispuestos a contribuir al mantenimiento mediante su propio trabajo, dedicando un tiempo a labores de apoyo al mantenimiento de los beneficios, mientras que el restante 17,65 % corresponde a las personas que no están dispuestas a colaborar para su mantenimiento. Las demás opciones no fueron escogidas.

En cuanto a la gestión ambiental necesaria para el mantenimiento de la calidad ambiental del humedal Caracolizal, se identificaron tres (3) actores principales que corresponden en mayor proporción a los propietarios de predios privados, quienes se considera que deben realizar acciones relacionadas en mayor proporción con el mantenimientos del lugar, el manejo ambiental y el control. Le sigue la autoridad ambiental, CORTOLIMA con funciones como regulación, control ambiental y regulación. Por último, la Alcaldía de Melgar con funciones propias de conservación y apoyo a la conservación de los otros dos actores identificados (Figura 43).

Figura 43. Actores identificados y principales funciones en términos de conservación del humedal Caracolizal.

Fuente: GIZ, 2021.

Todos los encuestados consideran que de continuar con la tendencia de manejo, las condiciones actuales del humedal El Caracolizal empeorarán, ya que consideran que las entidades del Estado no prestan suficiente atención a la conservación de los ecosistemas y que no existe interés por parte de los particulares sobre adelantar acciones de mantenimiento al humedal, razón por la que el volumen de agua cada día es menor.

En cuanto al futuro del humedal se considera que las principales acciones se encuentran la reforestación del área y la realización de jornadas de limpieza que peritan la recuperación del espejo de agua del humedal (Figura 44). Las actividades de recuperación comprenden acciones que permitan mantener el flujo de agua y su volumen de manera tal que se evite su desecamiento. En cuanto a los usos se plantea en mayor proporción su uso para la acuicultura, la ganadería y en menor proporción su adecuación para el desarrollo de actividades relacionadas con el turismo. Las referencias hacia la conservación, se relacionan con garantizar la permanencia del cuerpo de agua.

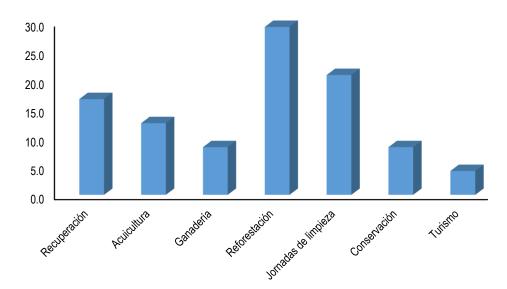
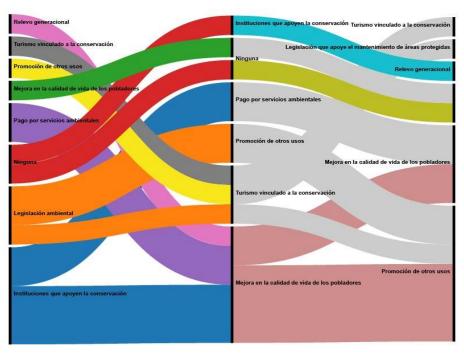



Figura 44. Acciones deseadas para el futuro del humedal El Caracolizal.

Fuente: GIZ. 2021.

Entre las acciones que se consideran de mayor importancia para el humedal El Caracolizal se encuentra la presencia de entidades que apoyen la conservación del humedal y que exista una normatividad ambiental clara al respecto (Figura 45). Se identifican acciones de gran importancia para los encuestados como el pago por servicios ambiental, la promoción de otros usos, el desarrollo de actividades turísticas vinculado a la conservación y la mejora en la calidad de vida de las comunidades. De acuerdo a su priorización, los temas sociales cobran más importancia que los institucionales y una pequeña parte, considera que no existen acciones que puedan mejorar la tendencia del humedal.

Figura 45. Grado de importancia de las acciones deseadas para el futuro del humedal Caracolizal.

Fuente: GIZ, 2021.

CAPITULO 6. COMPONENTE AMBIENTAL

6. COMPONENTE AMBIENTAL

6.1. INTRODUCCIÓN

A partir de la definición de humedal adoptada por Colombia en el marco de la Convención Ramsar, desde el Instituto Humboldt, con la participación de IDEAM, IGAC, Ministerio de Ambiente y Desarrollo Sostenible y la academia, se define operativamente a un humedal cómo "ecosistemas que, debido a condiciones geomorfológicas e hidrológicas, presentan acumulación de agua (temporal o permanentemente), dando lugar a un tipo característico de suelo y a organismos adaptados a estas condiciones, estableciendo así, dinámicas acopladas e interactuantes con flujos económicos y socioculturales que operan alrededor y a distintas escalas" (Sarmiento, 2016), permitiendo encontrar una orientación clara para reconocer elementos hidrológicos, geomorfológicos, edafológicos y de vegetación que facilitan la delimitación del humedal, además de permitir analizar el rol de las instituciones y de la sociedad civil en su funcionamiento, así como los servicios ecosistémicos de los cuales depende el bienestar de las comunidades allí presentes (Cortés-Duque y Estupiñan-Suárez, 2016).

Estos ecosistemas hacen parte de las áreas más ricas en biodiversidad, por lo que proporcionan multiplicidad de hábitats para especies animales y vegetales, y a su vez, ofrecen una variada gama de servicios ecosistémicos como la filtración de desechos, provisión de agua dulce y regulación del clima, entre otros, que traen diversos beneficios a la sociedad (Millenium Ecosystem Assesement [MEA], 2007; Ten Brink, Badura, Farmer y Russi, 2012).

La degradación y pérdida de los humedales está asociada de manera directa con los cambios en el uso del suelo, la introducción de especies invasoras, el aumento y desarrollo de infraestructuras y la contaminación; los principales generadores de cambios indirectos incluyen, entre otros, la expansión urbana y el creciente desarrollo económico (MEA, 2005). Además de factores naturales cómo la sedimentación, la desecación, avalanchas, tormentas, actividad volcánica e inundaciones (estacionales/ocasionales) (Ministerio de Medio Ambiente, 2002).

Los motores de transformación que afectan directamente a estos ecosistemas estratégicos en el país siguen la tendencia mundial. Por esta razón no solo se requiere el reconocimiento del valor de los humedales y del agua, sino también su integración en la toma de decisiones como elemento esencial para garantizar el futuro social, económico y la satisfacción de las necesidades ambientales a partir del uso racional de estos ecosistemas (Ten Brink et al., 2012), ya que se debe tener en cuenta que Colombia cuenta con 30.781.149 de hectáreas de humedales (Flórez-Ayala, et al., 2015) y más de 88 tipos diferentes entre humedales marinocosteros, interiores y artificiales, ecosistemas que hacen de Colombia un importante país proveedor de agua (Ricaurte, et al., 2015).

Debido a la problemática actual de los humedales de Colombia el Ministerio del Medio Ambiente estableció en el año 2002, la Política para los humedales Interiores

de Colombia, a partir de los principios establecidos en la Constitución Política y en las funciones asignadas en la Ley 99 de 1993 relacionadas con la formulación, concertación y adopción de políticas orientadas a regular las condiciones de conservación y manejo de ciénagas, pantanos, lagos, lagunas y demás ecosistemas hídricos continentales. Esta política nacional de humedales interiores reconoce a estos ecosistemas como estratégicos dentro del ciclo hidrológico y plantea como visión la garantía de la sostenibilidad y conservación de sus recursos hídricos (MMA, 2002), además de plantear la importancia de estos como sistemas socio ecológicos, en los que se reconoce al ser humano y su cultura como parte integral de la biodiversidad allí presente (Política Nacional de Humedales) (Contraloría General de la república, 2011).

Importantes adelantos sobre el conocimiento de humedales han permitido integrar elementos clave en las políticas, planes y programas de manejo actuales como el Plan Nacional de Desarrollo 2014-2018 para direccionar medidas de adaptación bajo las perspectivas nacionales de cambio climático (Departamento Nacional de Planeación, 2014) y los compromisos de acción nacional para la conservación y el uso racional de los humedales, establecidos con la Convención de Humedales de Importancia Internacional Ramsar, adaptándose bajo el objetivo general de la política nacional para humedales interiores de Colombia "Propender por la conservación y el uso sostenible de los humedales interiores de Colombia con el fin de mantener y obtener beneficios ecológicos, económicos y socioculturales, como parte integral del desarrollo del País".

6.2. METODOLOGÍA

Los procesos de afectación humana en los humedales, no son independientes de la dinámica natural de estos sistemas (Carpenter y Cottingham, 1998). Esta debe verse como una perturbación que actúa sobre la dinámica natural del sistema, y cuyo efecto depende de la magnitud, intensidad y tasa de recurrencia de la misma (aspectos externos), como también del estado del sistema y de su capacidad de retornar al estado de pre- perturbación o resiliencia (aspectos internos). En este sentido, los conflictos entre las actividades humanas y la conservación o uso sustentable de humedales se presentan en varios órdenes de magnitud, jerárquicamente organizados (Wayne-Nelson y Wéller, 1984). Entendiéndose como la transformación total del humedal (orden de magnitud 1) y factores de perturbación severa que corresponden al orden de magnitud 2. Teniendo en cuenta lo anterior se realizó un análisis de transformación del humedal teniendo en cuenta las siguientes características:

6.2.1. Transformación total (Orden de Magnitud 1).

La transformación total de un humedal, consiste en la desaparición total o el cambio fundamental de las características del sistema, de tal manera que deja de considerarse humedal, según las definiciones usadas. Los cambios pueden ser en los atributos físicos, químicos o biológicos. Entre las actividades humanas que presentan un conflicto de este tipo se encuentran:

- Reclamación de tierras. con fines agrícolas o ganaderos e implica la apropiación de espacios públicos y la expedición de títulos de propiedad, previa alteración de los niveles de agua o desplazamiento de los límites. (Restrepo y Naranjo, 1987).
- Modificación completa de regímenes hidráulicos y reclamación del espacio físico del humedal. El primero se produce en el ámbito de las cuencas de captación de las aguas que alimentan los humedales alterando su dinámica natural por la construcción y operación de obras civiles de regulación hídrica en algunos casos, o por cambios de cobertura vegetal que aumentan la carga de sedimentos o alteran la capacidad de retención de las aguas. El segundo, se origina para darle un uso diferente al humedal y es una forma frecuente de impacto contundente sobre los humedales especialmente en aquellos situados en las áreas urbanas o suburbanas y realizadas con el fin de ampliar el espacio para el desarrollo de infraestructura urbana, industrial o de recreación (MMA, 2002).
- Introducción o trasplante de especies invasoras. Con el fin de mejorar la oferta de proteína a través del cultivo de estanques o con fines de manejo (aumento en la retención de nutrientes o especies herbívoras para controlar "malezas acuáticas"), se han introducido o trasplantado especies invasoras que terminan liberándose al medio natural (MMA, 2002).

6.2.2. Perturbación Severa (orden de magnitud 2).

Se refiere a las perturbaciones que se producen por cambios en los atributos físicos, químicos o biológicos de áreas del humedal, que alteran algunas de sus funciones ambientales o valores sociales, pero que le permiten seguir funcionando como humedal. Las actividades humanas que pueden ocasionar este tipo de cambios son:

- Control de inundaciones. Trata de perturbaciones que cambian los ciclos hidrológicos en el humedal (caudal, pulso, ritmo y frecuencia) produciendo alteraciones en los ciclos biogeoquímicos y biológicos. Se producen mediante la construcción de obras civiles de "protección" para la contención, conducción o evacuación de las aguas (canales, diques o terraplenes) (MMA, 2002).
- Contaminación. Ocasiona cambios severos en la calidad de las aguas (química o por cargas de sólidos), lo cual desencadena cambios biológicos.
- Canalizaciones. Son alteraciones de los flujos superficiales de agua y su conducción a los cauces principales o secundarios. De esta manera, se altera la topografía y el régimen hídrico del humedal (MMA, 2002).
- Urbanización. Esta alteración severa como consecuencia del desarrollo urbano, industrial y de infraestructura de recreación puede producirse en zonas críticas

(vegetación riparia, transición con sistemas terrestres), por lo tanto, se afecta la dinámica regular del humedal (MMA, 2002).

- Remoción de sedimentos o vegetación. Puede ocasionar cambios severos en el funcionamiento hidrológico y la biocenosis de humedales, si se produce en la mayoría del área del humedal. Esta alteración se presenta por el mantenimiento de valores como la navegabilidad o por la extracción de materiales en los mismos (actividades mineras) (MMA, 2002).
- Sobreexplotación de recursos biológicos. Se produce por el exceso de uso de especies de fauna mediante la caza o la pesca, la recolección de nidos, la extracción de materiales para usos domésticos, industriales, locales (artesanías) o para el autoconsumo (leña o materiales de construcción) (MMA, 2002).
- Represamiento o inundación permanente. Tiene su origen en actividades de fomento piscícola, como la construcción de estanques para acuicultura, el represamiento de los flujos de agua en los pantanos para la creación de lagos con los mismos fines de recreación, lo que finalmente origina nuevos procesos ecológicos que pueden incluirse en el tipo de procesos típicos de humedales (MMA, 2002).

Los anteriores aspectos son fundamentales para la formulación de la Política Nacional de Humedales, puesto que la magnitud de las perturbaciones y la capacidad de resiliencia o respuesta de los mismos, están inversamente ligadas con las oportunidades de conservación, manejo y restauración.

6.3. CLASIFICACIÓN DE IMPACTOS

Se reconocen niveles jerárquicos o escalas espaciales de manifestación de los fenómenos ecosistémicos, que van desde el paisaje (cuenca hidrográfica), hasta unidades bióticas (comunidades o especies). La gestión de ecosistemas implica además la concurrencia en estos espacios de los actores y sectores involucrados, de tal suerte que los procesos de planificación o las evaluaciones ambientales de proyectos que los afectan, deben basarse en criterios múltiples (MMA, 2002).

De acuerdo con lo anterior, se han identificado diversos indicadores que permitirán reflejar el estado actual del humedal Caracolizal y establecer el plan de acción para la conservación y manejo del humedal (Tabla 18).

Tabla 18. Propuesta general de atributos indicadores de estado y gestión para humedales, centrados en su biodiversidad asociada (MMA, 2002).

Nivel	Atributos	Indicadores de Estado	Indicadores Impacto de Gestión
Continental	Procesos	Superficie (%) de	Diversidad
Nacional	ecológicos	unidades	ecosistémica y

Nivel	Atributos	Indicadores de	Indicadores
MVCI		Estado	Impacto de Gestión
	evolutivos y ambientales globales.	biogeográficas de ecosistemas de agua dulce no perturbados por factores de afectación (Transformación total o perturbación severa)	biogeográfica en el sistema de áreas protegidas o de manejo especial (% de humedales). Cantidad (%) de diversidad ecosistémica al interior de las áreas protegidas o especiales. Cambios en el índice de riesgo por gestión de ecosistemas.
Regional Paisaje	Diversidad ecosistémica. Número y proporción de tipos o unidades funcionales de los ecosistemas de humedales. Heterogeneidad y conectividad. Dinámica de formación y regeneración de ecosistemas.	Índice de diversidad e integridad ecosistémica. Índice de riesgo. Índice de fragmentación. Índice de madurez (Proporción de etapas sucesionales en una unidad ecológica).	
Local Comunidad biótica	Diversidad de especies. Riesgo de pérdida de especies amenazadas o en peligro de extinción. Especies exóticas.	Lista de especies amenazadas Riqueza de especies. Índice de diversidad y equitabilidad. Frecuencia de clases tróficas. Número y proporción de especies en categorías especiales. Presencia o abundancia de	Mantenimiento de las listas de especies por taxa seleccionados. Mantenimiento de riqueza de especies. Mantenimiento o aumento del índice de diversidad. Mantenimiento de frecuencia de clases tróficas indicadoras de estabilidad en el sistema.

Nivel	Atributos	Indicadores de Estado	Indicadores Impacto de Gestión
		bioindicadores de estado.	
Especie/ Población	Dinámica de las poblaciones.	Numero de poblaciones o subpoblaciones. Índices de agregación espacial de poblaciones. Número de individuos. Índice de agregación espacial de individuos. Distribución de clases de edad. Tasa interna de crecimiento poblacional.	aumento de número de individuos. Mantenimiento o mejoramiento de la
Genético	Número y proporciones de alelos. Variabilidad genética	Coeficiente de entrecruzamiento (inbreeding) Tasa de mutación vs. Tasa de pérdida.	Disminución del coeficiente de entrecruzamiento (inbreeding) Equilibrio entre tasa de mutación vs. Tasa de pérdida.

Fuente: GIZ, 2021.

6.3.1. ANÁLISIS CUALITATIVO DEL HUMEDAL CARACOLIZAL

A 2021 una vez caracterizado biológica y socioeconómicamente el humedal Caracolizal, se establecieron los factores de afectación para el cuerpo de agua de acuerdo con lo definido en la Política Nacional de Humedales Interiores para Colombia. En primera medida, el análisis ambiental requirió el estudio de la comunidad biótica del lugar, con evaluaciones de fauna y flora que permitieran establecer sus cambios en el tiempo y espacio.

La identificación y valoración de las actividades potencialmente generadoras de modificaciones al medio que pueden producir algún tipo de impacto e inciden directamente sobre el Humedal Caracolizal se evaluaron a través de una matriz cualitativa de impacto ambiental, la cual cuenta con dos entradas que indican las actividades presentes en el humedal, así como los elementos que pueden ser afectados a partir de ellas. Así, se resaltan las actividades de mayor incidencia, con el fin de establecer programas de manejo para control ambiental (Tabla 19). En

dicha matriz la presencia de una perturbación se anota con un 1 y la falta de éste como 0.

Tabla 19. Matriz cualitativa de impactos observados en el humedal Caracolizal, Melgar (Tolima).

		icción uaria			hamiento o agua		Admini	istración
VARIABLES	Cultivo en rondas	Cultivo autoconsumo	Ganadería extensiva	Cría animales para autoconsumo	Piscicultura	Pesca artesanal	Propiedad privada	Municipio/ Departamento
1. Agua		_						
Agua superficial permanente	0	0	1	0	0	0	1	0
Agua superficial temporal	0	0	0	0	0	0	1	0
Control de inundaciones	0	0	0	0	0	0	1	0
Canalización	0	0	0	0	0	0	1	0
Represamiento	0	0	0	0	0	0	1	0
2. Vegetación								
Vegetación leñosa	1	-	-	1	-	-	1	-
Vegetación herbácea	1	-	-	1	-	-	1	-
Diversidad	1	-	-	1	-	-	1	-
Fitoplancton	-	-	-	-	-	-	-	-
3. Fauna								
Riqueza zooplancton	-	-	-	-	-	-	-	-
Riqueza	-	-	-	-	-	-	-	-
macroinvertebrados								
acuáticos								
Riqueza peces	1	-	-	-	-	-	1	-
Riqueza herpetos	1	-	-	-	-	-	1	-
Riqueza aves	1	-	-	-	-	-	1	-
Riqueza mamíferos	0	-	-	-	-	-	1	-
4. Unidades ambient	ales / pais		1	1	1	1	1	1
Suelos expuestos	1	-	-	1	-	-	1	-
Bosques de vega-bosque	1	-	-	1	-	-	1	-
de galería								
Pastizal	1	<u> </u>	-	1	-	-	1	-
5. Uso de la tierra y d		1	I		I	1	1 0	ı
Producción	0	-	-	1	-	-	0	-
Ecoturismo	-	-	-	-	-	-	-	-

Fuente: GIZ, 2021.

6.4. ANÁLISIS COMPONENTE AMBIENTAL

Durante el análisis biótico del año 2021 del humedal Caracolizal se evidenciaron afectaciones en la comunidad de macroinvertebrados y peces, ya que el cuerpo de agua se encontraba altamente reducido, como resultado de fuertes intervenciones antrópicas. No obstante, se resalta la presencia de una comunidad de anfibios,

reptiles, lepidópteros y mamíferos propios de estos ecosistemas, dentro de los cuales se registra algunas especies bajo alguna categoría de amenaza, endémicas, casi endémicas, migratorias latitudinales y de uso comercial.

A pesar de estar altamente intervenido por cultivos de limón, se destaca una vegetación representativa de Bosque Seco Tropical, en donde las especies registradas no se encuentran en alguna categoría de peligro. Por otro lado, la fauna asociada a este humedal registra un gran número de especies de aves de amplia tolerancia y de áreas abiertas, en las que se destaca *Pitangus sulphuratus, Myiozetetes cayanensis, Megarynchus pitangua, Saltator coerulescens y Thraupis episcopus.* Así mismo, se reconoce 4 especies casi endémicas, *Forpus conspicillatus, Cyanocorax affinis, Pheugopedius fasciatoventris, Ramphocelus dimidiatus y Stilpnia vitriolina, y 4 especies migratorias, Crotophaga major, Myiodynastes maculatus, Tyrannus melancholicus y Tyrannus savana. Respecto a las especies que se encuentran en apéndice del CITES II, se registraron las aves <i>Glaucis hirsutus, Phaethornis anthophilus, Rupornis magnirostris, Milvago chimachima, Falco femoralis, Brotogeris jugularis, Amazona ochrocephala y Forpus conspicillatus.* En CITES III se encuentra *Dendrocygna autumnalis.*

En lo que respecta a anfibios y reptiles, no se registraron especies en categorías de amenaza, ni en apéndice CITES, en su lugar se destaca especies propias de Bosque Seco Tropical y tolerante a intervenciones antrópicas, *Rhinella horribilis* y *Leptodactylus insularum*.

Tanto para la comunidad de mamíferos y lepidópteros diurnos no se identificó especies en categoría de amenaza o en CITES. No obstante se resalta la presencia de mamíferos frugívoros, importantes para la conservación de los bosques, ya que éstos constituyen una fuente importante para el mantenimiento de las dinámicas de muchos ecosistemas a través de los procesos de dispersión de semillas, y mariposas claves en los procesos de polinización y fuente importante de alimento para otros organismos.

Teniendo en cuenta lo anterior, se hace necesario realizar monitoreos de las especies de los diferentes grupos faunísticos con el fin de detectar el estado de las comunidades faunísticas en una dimensión espacio-temporal que permita el ajuste a tiempo de actividades de manejo e intervención oportuna para revertir o evitar tendencias como las evidenciadas en este estudio durante la etapa de avaluación del componente biótico, al igual estos monitoreos permitirán robustecer y mantener listas de especies actualizadas que faciliten la identificación de especies de interés, tales como aves migratorias, mamíferos medianos y grandes, macroinvertebrados bioindicadores del estado de calidad del agua, así como anfibios y reptiles presentes en el humedal.

Transformación total del humedal

- Reclamación de tierras. las zonas aledañas se usan para actividades ganaderas y agrícolas (cultivos de limón) teniendo gran impacto sobre el humedal.
- Modificación completa de regímenes hidráulicos y reclamación del espacio físico del humedal. No hay obras civiles que alteren la dinámica del humedal.
- Introducción o trasplante de especies invasoras. Se evidencia la presencia del caracol africano (Achatina fulica).

Perturbación Severa al humedal

- Control de inundaciones. No se evidencio construcción de canales o diques.
- Contaminación. Durante las visitas se evidenció el posible uso de agroquímicos que se utilizan para la erradicación de plagas asociadas a los cultivos. No obstante, se requieren de mayores estudios para evidenciar este tipo de problemáticas en el humedal
- Canalizaciones. No se observó alguna alteración que llevará al cambio de la topografía y el régimen hídrico del humedal.
- Urbanización. Se presenta alteraciones de tipo urbano por la presencia de infraestructura de recreación, dado que el humedal se encuentra en un área privada.
- Remoción de sedimentos o vegetación. No se evidencio extracción de sedimentos o vegetación.
- Sobreexplotación de recursos biológicos. Los pobladores de la región dan a conocer que no existe el uso en exceso de especies de fauna mediante la caza o la pesca, ni la recolección de nidos o extracción de materiales para usos domésticos, industrial locales (artesanías) o para el autoconsumo (leña o materiales de construcción), sin embargo se requieren de mayores estudios para evidenciar este tipo de problemáticas en el humedal. Sin embargo, se reporta conflictos animal-hombre, especialmente con las serpientes,
- Represamiento o inundación permanente. Se evidencia construcción de estanques para acuicultura.

Plan de Manejo Ambiental (PMA) Humedal Caracolizal

CAPITULO 7. VALORACIÓN Y EVALUACIÓN

7. VALORACIÓN Y EVALUACIÓN

7.1. EVALUACIÓN ECOLÓGICA

A pesar de evidenciar ausencia del cuerpo de agua, el Humedal Cracolizal refleja una importante riqueza florística y faunística para la zona de influencia de este ecosistema, conforme a los análisis bióticos realizados. Esto hace del humedal un hábitat de alta influencia a nivel ecológico para las especies que lo habitan.

7.1.1. Tamaño y posición

El humedal Caracolizal se encuentra Ubicado en la vereda Chimbi en el municipio de Melgar, Departamento del Tolima, en las coordenadas N 4°12'14" W 74°43'10". Ocupa una extensión aproximada de 5,8 ha en una altura promedio de 317 m y 132.04 ha en la zona definida como la microcuenca del humedal.

7.1.2. Conectividad ecológica

Por la cercanía del humedal Caracolizal con bosques aledaños se puede deducir que existe la posibilidad de un intercambio, principalmente de la avifauna y quiropterofauna (dispersores de semillas), que a su vez contribuiría al intercambio de especies de vegetación. Sin embargo, se hace necesario realizar estudios de seguimiento y monitoreo a poblaciones de aves y murciélagos (anillado, censos) que muestren mayor capacidad de dispersión, para identificar las relaciones que se puedan presentar entre las aves y los distintos humedales y evidenciar si existe una conectividad y a qué grado se estaría presentando. Así mismo, se sugiere un análisis de la conectividad estructural del paisaje para comprender la relación entre la estructura y composición paisajística con la biodiversidad presente en el humedal, la cual facilitaría la estructuración y diseño de corredores biológicos que conecten las áreas con relictos boscosos que se encuentran en la vereda Chimbí y que presentan una alta diversidad de especies de fauna y flora.

7.1.3. Diversidad biológica

Al momento del ajuste del PMA, en 2021, la caracterización de las comunidades biológicas en el humedal, permitió la identificación de una gran diversidad de especies de flora y fauna, tanto terrestre como acuática. Dentro del componente acuático se identificó que la comunidad de macroinvertebrados está compuesta por 2 phylum, 2 clases, 3 órdenes y 4 familias. Finalmente en peces no se detectó organismos como resultado de la ausencia de un cuerpo de agua.

A nivel terrestre se identificó entre anfibios y reptiles diez especies pertenecientes a dos órdenes y siete familias, mientras que en aves se registraron 51 especies distribuidas en 23 familias y 14 órdenes. Por otro lado, se identificó un total de 14 especies dentro de la comunidad de mariposas agrupadas en cuatro familias, siete subfamilias, 13 géneros, mientras que mamíferos se caracterizó por 3 especies de mamíferos voladores pertenecientes a dos familias, dos subfamilias tres géneros,

con respecto a mamíferos medianos tan solo se identificó una especie. Finalmente dentro del componente flora, la comunidad se encuentra compuesta por un filo, 2 clases, 14 órdenes, 19 familias, 25 géneros y 19 especies.

Tabla 20. Numero de grupos taxonómicos identificados en el humedal Caracolizal.

Flora		-			
Filo	Clase	Orden	Familia	Generos	Especies
1	2	14	19	25	19
Fauna acuática					
Filo	Clase	Orden	Familia	Generos	Especies
2	2	3	4		•
Fauna te	rrestre			<u> </u>	
Filo	Clase	Orden	Familia	Generos	Especies
2	5	19	38	17	79

Fuente: GIZ, (2021).

7.1.4. Naturalidad

El humedal Caracolizal es un reservorio de agua de origen natural. Sin embargo al momento de su inspección se evidenció invasión del cuerpo de agua por plantas acuáticas (lenteja de agua, *Lemna minor L*). y gran pérdida de las condiciones hidrobiológicas del humedal, puesto que entre el PMA 2014 y la evaluación actual se evidencia una disminución de la riqueza de la fauna caracterizada.

7.1.5. Rareza

La rareza del humedal está dada por la presencia de especies endémicas, migratorias y aquellas registradas en alguna categoría de amenaza, cuyas poblaciones se caracterizan por ser reducidas. Esto hecho representativo contribuye a identificar y desarrollar alternativas de conservación asociadas a determinados ambientes (Ceballos, 2001). En el humedal Caracolizal, se identificó especies de gran importancia que reflejan el grado de conservación en el que se encuentra el humedal. Así mismo, se destaca especies migratorias que según Naranjo y Espinel (2009), Naranjo et al. (2012), Avendaño et al. (2017) y Ayerbe (2018) todas estas presentan poblaciones ya establecidas dentro del territorio nacional.

Tabla 21. Especies de importancia para la conservación del humedal Caracolizal.

Grupo	Especie	Rareza
Reptiles	Boa constrictor	Apéndice II – CITES
Aves	Glaucis hirsutus	Apéndice II – CITES
	Phaethornis anthophilus	Apéndice II – CITES
	Rupornis magnirostris	Apéndice II - CITES
	Milvago chimachima	Apéndice II – CITES

Falco femoralis	Apéndice II – CITES
Brotogeris jugularis	Apéndice II – CITES
Amazona ochrocephala	Apéndice II – CITES
Forpus conspicillatus	Apéndice II – CITES Casi endémica
Dan dra avena a vet vesa ella	
Dendrocygna autumnalis	Apéndice III – CITES
Cyanocorax affinis	Casi endémica
Pheugopedius fasciatoventris	Casi endémica
Ramphocelus dimidiatus	Casi endémica
Stilpnia vitriolina	Casi endémica
Crotophaga major	Migratoria
Myiodynastes maculatus	Migratoria
Tyrannus melancholicus	Migratoria
Tyrannus savana	Migratoria

Fuente: GIZ, 2021.

7.1.6. Fragilidad

Como cualquier ecosistema, este humedal enfrenta acciones antropogénicos que alteran la naturalidad de sus componente bióticos y abióticos. El resultado de estos es la clara reducción de su cuerpo de agua, y la presencia de especies invasoras como el caracolo africano, lo cual puede desencadenar alteraciones del enterno de este habitat y potencializar la amenaza que enfrenta especies de interes por su vulnerabilidad, endemismo o por los requerimientos ecológicos vitales que este humedal provee a otras especies.

7.1.7. Posibilidades de mejoramiento

Dentro de las propuestas, esta la recuperación, mantenimiento, y conservación del humedal y su biodiversidad mediante su aislamiento con cercas vivas empleando especies propias de este ecosistema, roceria y limpieza de su ronda hídrica, y lamina de agua, y reforestación alrededor del humedal. Así mismo, es importante la conformación de proyectos que garanticen un monitoreo de las condiciones naturales del humedal en aspectos de fauna y flora, fisicoquímicos y de control y vigilancia a estas acciones, por otro lado incluir proyectos de apropiación que involucren y permitan la participación de la comunidad (Talleres o curso de apropiación social del conocimiento).

Cabe resaltar la importancia de incluir actores sociales en el área de influencia del humedal, para garantizar la protección de este ecosistema, teniendo en cuenta que son los principales garantes e interesados en el valor ecológico y biológico que provee este ecosistema.

7.2. EVALUACIÓN SOCIOECONÓMICA Y CULTURAL

7.2.1. Conocimiento del humedal Caracolizal por los habitantes aledaños a 2021.

- Conocimiento del humedal. A pesar de no pertenecer a alguna asociación relacionada con temas ambientales o de conservación, la población entrevistada reconoce al humedal como un espacio que influye positivamente en el bienestar humano, y alberga fauna y flora, la cual debe ser conservada.
- Funciones del humedal. Se reconoce al humedal como un espacio que provee servicios de provisión relacionados principalmente con el recurso hídrico para consumo, riego y ganadería, en menor proporción para actividades relacionadas con la acuicultura. También se identifica como un espacio de regulación del clima y oferta de hábitat para especies de plantas y animales.
- Actitud frente al humedal. La población entrevistada reconoce la importancia del humedal, y las consecuencias que traería el desmejoramiento de las condiciones de este hábitat, ya que lo identifican como una ambiente relevante para la tranquilidad, belleza, armonía y felicidad de la comunidad, y fuente necesaria para bienestar humano.

7.2.2. Valoración económica.

De acuerdo a las actividades desarrollados y que demandan el uso de los recursos asociadas al humedal, los suelos son es el recurso con mayor requerimiento para la implementación de pastos para el ganado y algunos cultivos anuales.

En el área adyacente al humedal Caracolizal la actividad productiva más representativa son los cultivos, lo cual perturba el ecosistema de una manera importante; ya que en toda su extensión se observan graves procesos de deterioro ambiental, el espejo de agua es insignificante y la superficie se encuentra colonizada por vegetación acuática.

Plan de Manejo Ambiental (PMA) Humedal Caracolizal

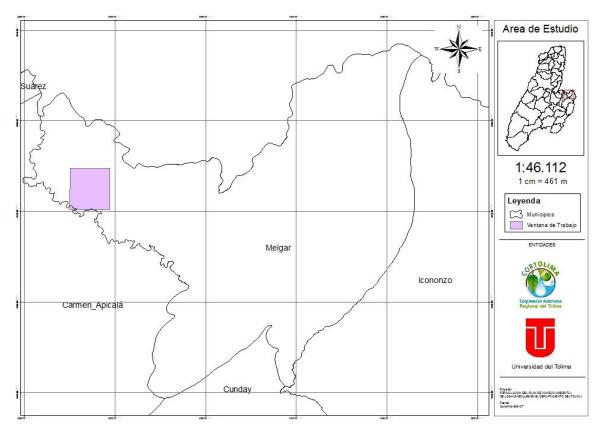
CAPITULO 8. ZONIFICACIÓN DEL HUMEDAL

8. ZONIFICACIÓN DEL HUMEDAL

La zonificación ambiental, es la base para determinar cómo se deben utilizar de la mejor manera los espacios del territorio, de una forma armónica entre quienes lo habitan y la oferta de los recursos naturales; Es la carta de navegación para orientar a los actores sociales quienes intervienen y toman decisión sobre sus actuaciones en la zona, buscando así un equilibrio hombre naturaleza, de tal manera que se garantice para las generaciones futuras la sostenibilidad en términos ambientales, socieconómicos y culturales (Mamaskato, 2008).

La zonificación para la ordenación y manejo de los humedales, se constituye además en un ejercicio dinámico, flexible el cual debe ser revisado y ajustado constantemente de acuerdo a las dinámicas sociales y a las eventualidades imprevistas como son las catástrofes naturales. (Mamaskato, 2008)

8.1. Aspectos metodológicos


8.1.1. Delimitación de Área de Estudio

Para 2014 la extensión máxima del área de estudio correspondió a un área total de 2500 ha (Figura 46). Como referencia para la identificación de los elementos del paisaje, se utilizaron imágenes de satélite de ArcGIS online (escala 1:25000) donde se incluyó como parte de la matriz todos los componentes más importantes. Dichos componentes fueron parte del territorio de interés económico como los cultivos, zonas de transporte, poblaciones o áreas urbanas en lo posible, infraestructura vial y de interés económico como los canales de riego y áreas de interés ambiental como teselas que corresponden a Vegetación de Crecimiento Secundario o Rastrojos etc.

8.1.2. Escala de edición

En ese mismo año la edición de los polígonos (zonificación), se definió con un Área mínima cartografiable de 1:3000. Este principio indica que a partir de determinada área espacial los polígonos y sus correspondientes contenidos deben ser digitalizados; de lo contrario se dificultaría la distinción y los polígonos carecerían de rigor o detalle. Finalmente se procuró que la tolerancia del entorno de la edición de polígonos fuera de máximo dos pixeles para evitar errores topológicos y garantizar una precisión.

Figura 46. Área de Estudio para la Zonificación Ambiental

Fuente: GIZ (2014).

8.1.3. Sistemas de Información Geográfica

En el 2014 la Zonificación Ambiental se llevó a cabo mediante inspección general del área de estudio, los ecosistemas y la vegetación típica. Parte de la delimitación se realizó mediante el uso de un receptor GPS (o Sistema de Posicionamiento Global) Garmin 60csx. El error de exactitud estuvo en +- 3 (metros). Para homogenizar la información, se configuro el GPS en el Datum WGS 84. Finalmente los polígonos fueron transformados a la referencia espacial Datum Magna-Sirgas y agregados al proyecto de digitalización.

Para la Cartografía, se consumió el servicio de mapas a través de una inspección general de las fotografías e imágenes satelitales con el fin de tener una visión de conjunto más amplia de las coberturas. La inspección se realizó con una base de mapa de ArcGIS online y Complementos tipo open layers plugin como google satellite y bing aerial, consumidos a través de Quantum GIS 1.8.0 Lisboa.

Se procedió a realizar la cartografía del límite de cada ecosistema con el cual se realizaron los modelamientos con los que se delimitaron cada una de las unidades de zonificación a través del software ArcGIS 10.1. Las unidades, coberturas o zonificaciones se realizaron creando los polígonos que delimitan manchas homogéneas, interpretándose como hábitats o coberturas en función de su color y

textura. Una vez delimitada la cobertura o zonificación (vector o polígono) se procedió a introducir sus atributos, como nombre, Perímetro y Área (ha).

Las coberturas o zonificaciones principales o intermedias digitalizadas obtenidas poseen límites definidos y contienen un conjunto de atributos característicos que permiten diferenciarlas de unidades vecinas. El conjunto de todas las delineaciones (polígonos) fueron identificadas con un mismo código de cobertura (Ej: AESA=Áreas de Especial Significado Ambiental).

8.1.4. Delimitación de Humedales

Ese mismo año para la delimitación de los parches se realizaron recorridos a pie, bordeando el humedal y tomando como borde, la vegetación característica de los parches o los espejos de agua. Al mismo tiempo se llevó un GPS (Garmin 60csx) configurado con una frecuencia de registro de +- cada 5 metros, para realizar la delimitación más detalladamente, a través de un track (trayecto). El error de exactitud estuvo en +- 3 (metros). Posteriormente la información fue transformada a formato Shapefile, editada y procesada en un Sistema de Informacion Geográfica. Finalmente se crearon atributos que corresponde a Área, Perímetro y Nombre.

8.1.5. Conservación de los Humedales

Delimitación de Rondas Hídricas. Para la delimitación de las rondas hídricas, se utilizó el geoproceso de proximidad, llamado Buffer Analyst, en un Sistema de Informacion Geográfica como es ArcGIS 10.1 (SIG). El Buffer se calculó para una distancia de 30m alrededor de cada polígono correspondiente a los humedales (Z1). Dicho Buffer se conoce como Ronda hídrica.

8.1.6. Criterios para la Zonificación Ambiental

La observación y análisis integrado de los elementos del paisaje permiten la identificación, delineación y caracterización de las coberturas o zonificaciones. Para tal fin se tuvo en cuenta manchas homogéneas, interpretándose como hábitats, ecosistemas o zonificaciones en función de su color y textura.

8.2. Resultados

8.2.1. Zonificación Principal

En el PMA 2014 con la agrupación de atributos, entendiéndose por atributos las unidades definidas en las diferentes variables, en general se determinaron 187 fragmentos agrupados en 3 categorías o zonificaciones, se delimito un total de 500 hectáreas; el fragmento de mayor extensión (346,3 ha) corresponde a la Zonificación de Área de Recuperación Ambiental (ARA). El fragmento de menor extensión (0,01 ha) corresponde a la Zonificación de Área de Recuperación Ambiental (ARA) (Tabla 22).

Tabla 22. Resultados de Fragmentos Zonificación Principal

Zonificación	N° de	Área		Área Total	% de
Principal	Fragmentos	Max	Min	(ha)	Área
AESA	140	13.12	0.001	139.12	27.8
AIS	7	3.92	0.15	5.96	1.19
ARA	40	346.2	0.001	354.92	69.2
	187			500	100

Fuente: GIZ (2014).

La mayor representatividad de las zonas o fragmentos debidamente agrupados, corresponde a Áreas de Recuperación Ambiental (ARA) con un 69,2 % y 40 fragmentos, lo que coincide con el uso de suelo y la actividad económica para la ganadería. En segundo lugar de representatividad fue para la zonificación Áreas de Especial Significado Ambiental (AESA), con un 27,8 % y 140 fragmentos, donde se agrupan áreas de rastrojos, vegetación de Crecimiento Secundario y los Humedales.

La menor representatividad correspondió a la zonificación Área de Importancia Social (AIS), con un 1.19 % y corresponde a lugares destinados para la infraestructura, con 7 fragmentos (Figura 47).

Figura 47. Mapa de Zonificación Principal

Fuente: GIZ (2014).

8.2.2. Zonificación Ambiental Intermedia

Con la agrupación de atributos, de manera general en el PMA 2014 se determinaron 185 fragmentos agrupados en 5 categorías o zonificaciones (Tabla 23; Figura 48). Se delimito un total de 500 hectáreas; el fragmento o zonificación de mayor extensión (346,2 ha) corresponde a la Zonificación Z3 categorizada como Pastos, siendo el uso de suelo más dominante en el área de trabajo. En general la Zonificación Z3 presenta la mayor extensión (354,9 ha). Por lo anterior, supone un área de combinación de pastos arbolados, desnudos, utilizados en gran medida, para la ganadería, como actividad económica principal en el área de estudio.

El fragmento de menor extensión (12,7 ha) corresponde a la Zonificación Z1 y esta agrupado dentro de los Humedales.

La zonificación con un mayor número de fragmentos corresponde a Vegetación de Crecimiento Secundario con 139 fragmentos lo que sugiere una representación en la matriz, con fragmentos de extensión variable. Dichos fragmentos podrían estar inmersos en la presión o dominancia de fragmentos con interés económico para la ganadería de zonificación tipo Z3, el cual por su número de fragmentos suponen además una homogeneidad de uso del suelo pastos.

En segundo lugar en número de fragmentos se determinó la zonificación Z3 correspondiente a Pastos (40). Dicha zonificación es predominante en toda el Área de Estudio, donde además no existen cultivos de extensión importantes.

Tabla 23. Resultados de Fragmentos Zonificación Intermedia

Nombre	Zonificación Intermedia	N° de Parches	Suma de Area (Ha)	% de Área
Humedal	Z1	1	6,32	1
Vegetación de Crecimiento Secundario	Z2	139	126,5	25
Pastos	Z3	40	354,9	72
Cuerpos de Agua	Z4	2	4,8	1
Infraestructura	Z5	5	1,1	0
		187	500	100

Fuente: GIZ (2014).

Al igual que la zonificación principal, la mayor representatividad en la Zonificación Intermedia corresponde a Z3 (ARA) con un 71 % y 40 fragmentos, lo que coincide con el uso de suelo predominante en el área de estudio. En segundo lugar de representatividad fue para la zonificación Z2 (25%), agrupada como Vegetación de Crecimiento Secundario y presento un número mayor de fragmentos (139). La menor representatividad correspondió a la zonificación Z4 con (1%), y pertenece a

los cuerpos de agua, que en la ventana de trabajo, son utilizados para el turismo y como bebederos para el ganado.

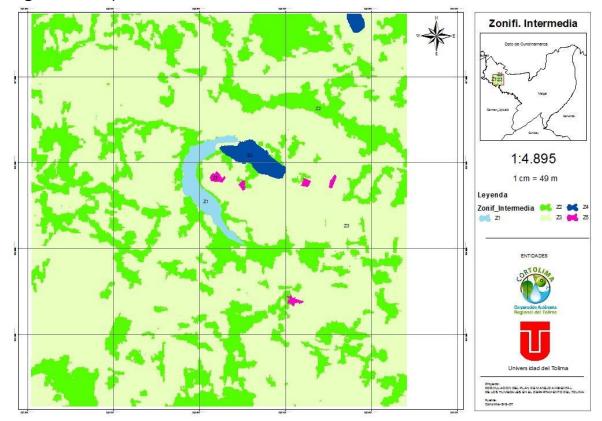


Figura 48. Mapa de Zonificación Ambiental Intermedia

Fuente: GIZ (2014).

8.2.3. Ronda hídrica

Para la descripción de las rondas hídricas se recalculo el área de Z1 después de la unión del polígono de Z1 con el del buffer (30m). Posteriormente se disolvieron los polígonos contenidos en Z1 y el cual conservo dicha categorización y se determinó el área de ganancia para la conservación del humedal (Z1). El parche Z1 sin ronda hídrica presentó un área de 6,32 ha aproximadamente; al recalcular el parche Z1 con la ronda hídrica presento un área de 12,6 ha aproximadamente (Tabla 8.3).

Al realizar la intersección de la ronda hídrica y las Zonas intermedias, el humedal Z1aumentó de área un 50%. Por lo anterior, desde el punto de vista del paisaje el parche Z1, Z2, Z3 y Z4 se fusionaron y presento un área total de 12,6 ha (Figura 8.4).

Teniendo en cuenta los parámetros de fusión e intersección descritos anteriormente el parche Z1 presento un área de 6,32 ha y con la ronda hídrica aumento en un 50%, ha. El parche de humedal Z2 tuvo un área aproximada de 3,19 ha, el cual representa el 25% de ganancia para la ronda hídrica. Posteriormente la zonificación

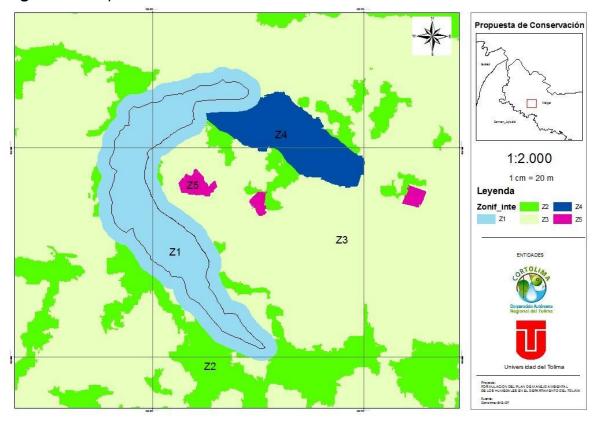

Z3 con un área de 2,95 ha y una ganancia en la ronda hídrica de 23 %. Finalmente con 1,4% de ganancia de la zonificación Z4 se obtiene el área total de la ronda, el cual en la cartografía o propuesta de conservación sigue nombrada como Z1 y un área total de 12,6 ha.

Tabla 24. Áreas de Conservación de Humedales con Ronda Hídrica

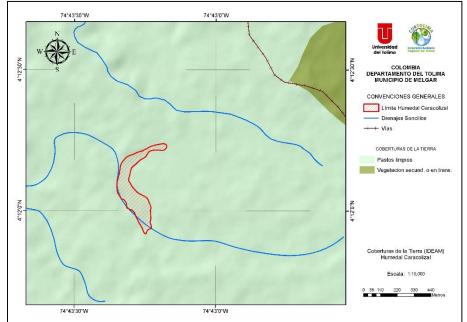
Nombre	Sin Ronda Hídrica (ha)	% de área de (ha)
Z 1	6,32	50
Z2	3,19	25
Z 3	2,95	23
Z 4	0,1	1,4
Total de ronda hídrica	12,6	

Fuente: GIZ (2014).

Figura 49. Mapa Final de Ronda hídrica

Fuente: GIZ (2014).

8.2.4. Coberturas y usos de la tierra


La delimitación de la cobertura y usos de la tierra proporciona una herramienta de apoyo importante en la gestión sostenible de los recursos naturales, siendo un elemento planificador en el ordenamiento de los territorios. Para ello, el IDEAM ha

implementado metodologías para la definición y clasificación de coberturas como CORINE Land Cover adaptada para Colombia (CLC-C) a escala 1:100.000 aportando significativamente al seguimiento y evaluación de los procesos dinámicos de los recursos naturales y del medio ambiente.

Para su análisis, fue consultada y consolidada información cartográfica de coberturas y usos de la tierra disponible en repositorios de libre acceso del Sistema de información Ambiental de Colombia (SIAC) para el periodo 2012. Como resultado, se encontraron las siguientes clasificaciones.

Al año 2021, con el análisis topobatimétrico en el Humedal Caracolizal, se encontraron las siguientes coberturas:

- Pastos limpios: Coberturas con cerca del 70% de ocupación, caracterizada principalmente por restringir el desarrollo de otras coberturas debido a prácticas constantes de manejo. Presente en una gran variedad de relieves y climas, dependiendo de la vocación productiva de la región.
- Vegetación secundaria o en transición: Cobertura originada por procesos de transición como consecuencia de la intervención antrópica o por destrucción de la vegetación primaria. Desarrollada en zonas desmontadas para diferentes usos y en áreas agrícolas abandonadas, sin evidencia actual de intervención humana.

Figura 50. Coberturas y usos de la tierra presentes para el Humedal Caracolizal.

Fuente: GIZ, (2021).

Plan de Manejo Ambiental (PMA) Humedal Caracolizal

CAPITULO 9. PLAN DE MANEJO AMBIENTAL

9. PLAN DE MANEJO AMBIENTAL

9.1. INTRODUCCIÓN

En el presente documento se abordan los temas concernientes a la planificación de las actividades derivadas de la caracterización del humedal Caracolizal, en el 2021, dentro del marco de lo institucional, legal, económico, ambiental, social y de política pública, para los ecosistemas estratégicos.

Por tanto el presente Plan de Manejo Ambiental del humedal, tiene como propósito rehabilitar algunas de las funciones que presta estos ecosistemas a través de la conservación de los valores que cumple ambientalmente y beneficiar las especies de flora y fauna que aún se mantienen, con el establecimiento de programas viables a corto, mediano y largo plazo que promuevan una conciliación del hombre con la naturaleza y coordinar acciones, mediante mecanismos de participación con la comunidad local, institucional e industrial.

Los ecosistemas de humedal desempeñan un papel fundamental dentro del funcionamiento de una cuenca, dependiendo para ello del comportamiento del ciclo hidroclimático; contribuyen a la vez a la regulación de la misma, y ofrecen una gran variedad de bienes, servicios, usos y funciones para el ser humano, la flora y fauna silvestre, así como, para el mantenimiento de sistemas y procesos naturales (Ministerio de Medio Ambiente, 2002).

El presente Plan de Manejo, integra las variables socioculturales, de tradición del uso del suelo, de la fauna y flora endémica presente aún en el ecosistema y aspectos físicos, con la finalidad de planificar el desarrollo sostenible en el humedal, abriendo canales de participación activa que permita adelantar acciones de intervención para rehabilitación de hábitat en este humedal, bajo los lineamientos dados en el marco de la normatividad nacional sobre el manejo de los humedales en la Resolución 157 de 2004, Resolución 196 de 2006 y Resolución 1128 de 2006 del Ministerio de Ambiente, Vivienda y Desarrollo Territorial.

La propuesta se hace en torno al humedal Caracolizal, teniendo en cuenta la condición y la gran importancia que dicho ecosistemas reviste para la conservación de la biodiversidad, y la prestación de bienes y servicios ambientales; teniendo en cuenta esto se plasman diferentes actividades relacionadas con la investigación, gestión y divulgación, cuyo propósito fundamental consiste en diseñar estrategias para la restauración y conservación ecológica del humedal, visualizando un plan realizable desde el punto de vista operativo y financiero.

9.2. METODOLOGÍA

La metodología para el desarrollo del Plan de Manejo Ambiental (PMA), se llevó a cabo acorde con las características particulares de cada área, se identificó los humedales que por su unidad en si por sus características físicas son los de mayor relevancia sobre el valle cálido de Magdalena en el departamento del Tolima, a partir

de los sondeos iníciales a la zona se recopilo información que sirvió para identificar los vacíos de información y así orientar los trabajos técnicos.

La información recopilada además de aportar elementos de análisis justificaba la implementación de acciones que desembocaran en la elaboración de un plan de manejo para preservar o usar de manera sostenible los recursos existentes y mejorar la calidad de vida de los implicados directos sobre los humedales; considerando la integralidad y relación existente entre los diferentes ecosistemas asociados al ciclo hidrológico y las dinámicas del desarrollo socioeconómico regionales.

La metodología utilizada en este documento se sustentó en analizar los resultados de la línea base, la caracterización del humedal Caracolizal, la proyección de la perspectiva y la zonificación, para así, terminar con la formulación del plan de manejo ambiental, con un componente básico de participación en el cual se concertaron programas y posibles perfiles de proyecto que puedan enfocar los esfuerzos institucionales y comunitarios llevándolos a la ejecución.

Las fases sustentadas en lo anterior, tuvieron como principio fundamental:

Participación: de los actores y dueños de las áreas sobre las cuales se identificaron los humedales, en la planificación y ejecución de cualquier esfuerzo para alcanzar el uso racional de los mismos y para que cualquier proceso a implementarse fuese conocido por los diferentes actores haciéndoles partícipes en la información técnica presentada y discutida con la comunidad, ya que, parte de la implementación y administración debe ser responsabilidad de las comunidades y las instituciones.

Información técnica como soporte de la equivalencia entre los actores: información orientada a garantizar la equivalencia de la información suministrada a través de la participación de los actores, y en la cual el equipo técnico de acuerdo a lo suministrado y percibido gracias a los diferentes observación directa sobre el área de humedales pueda orientar la formulación del plan de manejo.

Para efectos del desarrollo de las acciones propuestas por el plan de acuerdo a su nivel jerárquico y la dependencia e inclusión de unas con otras, se estableció en primera instancia el diseño de la Visión, a partir de esta, la Misión y como aspecto complementario de estos parámetros iníciales de planeación, se trazaron los objetivos; la segunda etapa en la formulación del plan estableció las estrategias, dentro de estas la definición de los programas y por último, a su vez dentro de estos programas, el diseño de los perfiles de proyectos que detalla el conjunto de actividades.

El primer proceso aplicado fue consultar la información y documentación temática disponible, tomada en términos legales del Ministerio de Ambiente y Desarrollo Sostenible (MinAmbiente) y en términos técnicos, de los EOTs Municipales, los Planes de Ordenación Ambiental de Cuencas –POMCAS- (Documentos CORTOLIMA-CORPOICA), Planes de desarrollo municipales, Estudio de zonas

secas en el departamento del Tolima y Plan de Acción departamental del Tolima 2012-2015.

De acuerdo a la información consultada a través de los diferentes documentos, junto a la percepción de las comunidades y las instituciones con injerencia sobre las zonas de humedales, se constituye una serie de programas que a su vez contienen uno perfiles de proyectos formulados en una visión conjunta, suscitada desde la óptica comunitaria e institucional, que se acoge en el marco del cumplimiento de objetivos propios del plan de manejo.

9.3. VISIÓN

Para el presente plan, considerando lo expuesto en el marco conceptual, la visión es: "Para el 2032 se espera tener restaurado ecológicamente el 50% del humedal Caracolizal, disminuyendo las amenazas que ponen en riesgo el recurso hídrico, fauna y flora, fomentando al mismo tiempo el compromiso conservación por parte de la comunidad e instituciones que se encuentran directamente relacionada con el humedal."

9.4. MISIÓN

"Desarrollar una amplia gestión institucional con participación pública, privada y comunitaria que propenda por la conservación, recuperación y el uso sostenible de los recursos hídricos, flora, fauna y biodiversidad, con fundamento en la administración eficiente y eficaz, de los recursos naturales en los humedales naturales en el valle cálido del Magdalena del departamento del Tolima".

9.5. OBJETIVOS

9.5.1. Objetivo General del Plan de Manejo

Preservar las condiciones naturales que permitan el mantenimiento de la biodiversidad y la capacidad de regulación hídrica del humedal Caracolizal.

9.5.2. Objetivos específicos

- Conservar las áreas de especial significancia ambiental con el fin de garantizar la provisión del recurso hídrico y mantenimiento de la biodiversidad.
- Realizar un aprovechamiento ambientalmente sostenible de la riqueza hídrica del humedal.
- Conservar las zonas que aún no han sido afectadas por procesos de origen antrópico.

9.6. TIEMPOS DE EJECUCIÓN

Corto plazo: 1 a 3 años.

Mediano plazo: 3 a 6 años. Largo plazo: 6 a 10 años.

9.7. ESTRATEGIAS

Las estrategias del Plan de Acción están direccionadas en cinco líneas, acordes con la Política Nacional de Humedales, las cuales se desarrollan en programas y proyectos específicos a cada uno de ellos.

I. Manejo y Uso Sostenible

Para Ramsar "El uso racional de los humedales consiste en su uso sostenible para beneficio de la humanidad de manera compatible con el mantenimiento de las propiedades naturales del ecosistema". Se define uso sostenible como "el uso de un humedal por los seres humanos de modo tal que produzca el mayor beneficio continuo para las generaciones presentes, manteniendo al mismo tiempo su potencial para satisfacer las necesidades y aspiraciones de las generaciones futuras".

Esta estrategia está orientada a garantizar un aprovechamiento del ecosistema sin afectar sus propiedades ecológicas a largo plazo. De acuerdo al establecido en la Convención de Ramsar, el concepto de "Uso Racional" debe tenerse en cuenta en la planificación general que afecte los humedales. El enfoque de la presente estrategia tiene como principio la intervención para la recuperación y conservación de la diversidad biológica, promoviendo el uso público de valores, atributos y funciones que incluyen no sólo la riqueza biológica del humedal sino los procesos de ordenamiento territorial y ambiental.

II. Conservación y Recuperación

Para Ramsar, "el mantenimiento y la conservación de los humedales existentes siempre es preferible y menos dispendiosa que su restauración ulterior" y que "los planes de restauración no deben debilitar los esfuerzos para conservar los sistemas naturales existentes". Los datos cuantitativos y las evaluaciones subjetivas ponen en evidencia que las técnicas de restauración hoy disponibles no redundan casi nunca en condiciones equivalentes a las de los ecosistemas naturales vírgenes. La conclusión de esto es que se ha de evitar el canje de hábitat o ecosistemas de alta calidad por promesas de restauración, excepto cuando intervengan intereses nacionales imperiosos. Con todo, la restauración de sitios determinados puede contribuir a la gestión en curso de los humedales de elevada calidad existentes, por ejemplo, mejorando el estado general de la cuenca de captación, y mejorar la gestión respecto de la asignación de recursos hídricos.

La Convención de Ramsar no ha intentado proporcionar definiciones precisas de estos términos. Aunque cabría decir que "restauración" implica un regreso a una situación anterior a la perturbación y que "rehabilitación" entraña un mejoramiento de las funciones del humedal sin regresar necesariamente a la situación anterior a

la perturbación, estas palabras se consideran a menudo intercambiables tanto en la documentación de Ramsar como en la documentación relativa a la conservación. Estos *Principios y lineamientos para la restauración de humedales* utilizan el término "restauración" en su sentido amplio, que incluye tanto los proyectos que promueven un regreso a la situación original como los proyectos que mejoran las funciones de los humedales sin promover necesariamente un regreso a la situación anterior a la perturbación.

La presente estrategia está orientada al conocimiento y manejo de la alteración del sistema acuático, conversión en los tipos de suelo y al uso actual del suelo de protección, las malas prácticas y los patrones de drenaje al humedal que reducen seriamente los beneficios ambientales y económicos del humedal Caracolizal. La estrategia está pensada para que los dos ejes recuperación y conservación sirvan como acciones de acuerdo a las fases de priorización de intervención y coordinadas alrededor de la reparación de los procesos de degradación ocurridos en el ecosistema, al igual que la prevención de futuras pérdidas ya sea de los valores, atributos y/o funciones del humedal.

III. Comunicación, formación y concienciación

Según Ramsar, La comunicación es el intercambio en dos sentidos de información que promueve y da lugar a un entendimiento mutuo. Es posible valerse de ella para conseguir que los 'actores'/interesados directos participen y es un medio de conseguir la cooperación de grupos de la sociedad escuchándoles primero y luego explicándoles por qué y cómo se toman las decisiones. Cuando se aplica un enfoque instrumental, se recurre a la comunicación con otros instrumentos para respaldar la conservación de los humedales a fin de encarar las restricciones económicas y motivar acciones.

La **educación** es un proceso que puede informar, motivar y habilitar a la gente para respaldar la conservación de los humedales, no sólo introduciendo cambios en sus estilos de vida, sino también promoviendo cambios en la conducta de las personas, las instituciones y los gobiernos.

La **concienciación** hace que las personas y los grupos más importantes con capacidad de influir en los resultados tengan presentes las cuestiones relacionadas con los humedales. La concienciación es una labor de promoción y fijación de una agenda que ayuda a la gente a percibir las cuestiones importantes y por qué lo son, las metas que se quieren alcanzar y qué se está haciendo y se puede hacer en ese sentido.

Esta estrategia tiene como principio fundamental el conocimiento del humedal, mediante la integración de distintas disciplinas, actores y procesos en cumplimiento de las necesidades expresadas en la gestión local y Regional, incorporándose el componente investigativo de los procesos biofísicos y socioculturales que se desarrollan alrededor del humedal Caracolizal.

IV. Investigación, Seguimiento y Monitoreo

La Investigación tiene como principio fundamental el conocimiento del humedal, mediante la integración de distintas disciplinas, actores y procesos en cumplimiento de las necesidades expresadas en la gestión local y regional, incorporándose el componente investigativo de los procesos biofísicos y socioculturales que se desarrollan alrededor del humedal Caracolizal. El conocimiento permanente del tiempo de las personas que viven cercanas y aledañas al humedal generara a futuro mecanismos de apropiación y conservación por el ecosistema a nivel local.

La existencia de un programa de monitoreo y reconocimiento eficaz es un requisito previo para determinar si un humedal ha sufrido o no un cambio en sus características ecológicas. Dicho programa es un componente integral de cualquier plan de manejo de humedales y debería permitir que, al evaluar la amplitud y lo significativo del cambio, se tengan plenamente en consideración los valores y beneficios de los humedales.

El monitoreo debería establecer la amplitud de la variación natural de los parámetros ecológicos dentro de un tiempo determinado. El cambio en las características ecológicas se produce cuando estos parámetros se sitúan fuera de sus valores normales. Así pues, se necesita, además de la labor de monitoreo, una evaluación de la amplitud y lo significativo del cambio teniendo en cuenta la necesidad de que cada humedal tenga una situación de conservación favorable.

V. Evaluación del Riesgo en Humedales

La Convención sobre los humedales (Ramsar, 2000) ha elaborado este marco conceptual para evaluar el riesgo en humedales a fin de ayudar a las Partes Contratantes a predecir y evaluar el cambio en las características ecológicas de los humedales incluidos en la Lista de Humedales de Importancia Internacional y otros humedales. Este Marco aporta orientaciones acerca de cómo predecir y evaluar cambios en las características ecológicas de los humedales y en particular destaca la utilidad de los sistemas de alerta temprana.

Para la ejecución de los proyectos se estableció un horizonte de tiempo de diez años en los que las acciones a realizar durante los primeros tres años se definen de corto plazo; entre el cuarto y sexto año de mediano plazo, y entre el séptimo y décimo año de largo plazo.

9.8. PROGRAMAS Y PROYECTOS

PROGRAMA 1.
RECUPERACIÓN, MANTENIMIENTO Y CONSERVACIÓN DEL HUMEDAL Y SU
BIODIVERSIDAD.

Proyecto 1.1. Recuperación del humedal

Justificación:

Los humedales son un ecosistema estratégico, ya que son factor primordial en la regulación de los ciclos hidrológicos, al mismo tiempo ayudan a moderar altas temperaturas, precipitaciones y ciclos climáticos, también facilitan ciclos ecológicos que constituyen fuente de materia y energía para la fauna y flora asociada a estos, como para las comunidades que los rodean. La integración de estrategias que propendan por la recuperación, mantenimiento y conservación de estos ecosistemas no solo facilitan el funcionamiento integrado del medio físico y biológico, sino también el aprovechamiento y uso sostenible, lo cual permite a largo plazo un funcionamiento integral, beneficioso para la flora, fauna y comunidades que los componen. Esto facilita el alcance de una riqueza socioambiental que permite no solo la belleza paisajística de los humedales sino también el uso de estos como áreas de esparcimiento, aprendizaje y desarrollo científico.

Objetivo general:

Emprender acciones que garanticen la mejora del estado actual del humedal en su componente hídrico y biótico.

Objetivos específicos:

- Garantizar la permanencia del recurso hídrico del humedal a condiciones que permitan el funcionamiento adecuado e integral de este ecosistema.
- Recuperar la ronda hídrica del humedal y su franja de protección.
- Erradicar la esepcie invasora Cracol Africano

Meta:

 Mejorar las condiciones físicas y biológicas del humedal Caracolizal en un 50% a mediano plazo.

Actividades:

- Rocería y limpieza periódica encaminada a reducir la proliferación y permanencia de especies herbáceas alrededor y dentro del humedal.
- Aislamiento del humedal mediante la implementación de cercas vivas con especies nativas.
- Manejo, control (físico o químico) y erradicación de poblaciones de Achatina fulica (Caracol africano).

Indicadores:

- Hectáreas del humedal recuperadas por año.
- % de aislamiento del humedla
- Número de limpiezas y % erradicacion de poblaciones de Achatina fulica (Caracol africano).

Partes involucradas:

- 1. Entidades locales: Alcaldía municipal.
- 2. Entidades estatales: Gobernación, CORTOLIMA.
- 3. Comunidad local.

Prioridad: Corto y Mediano Plazo.

PROGRAMA 1. RECUPERACIÓN DE LAS CONDICIONES DE VIDA DEL HUMEDAL YE SU BIODIVERSIDAD.											
Proyecto 1.1. Recuperación de la ronda hídrica.											
Actividades	1	2	3	4	5	6	7	8	9	10	
1.1.1 Rocería y limpieza periódica encaminada a reducir la proliferación y permanencia de especies herbáceas alrededor y dentro del humedal	х			Х				Х			
1.1.2 Aislamiento del humedal mediante la implementación de cercas vivas con especies nativas		Х									
1.1.3 Manejo, control (físico o químico) y erradicación de poblaciones de Achatina fulica (Caracol africano)	Х			Х				Х			

Costos

PROGRAMA 1. RECUPERACIÓN DE LAS CONDICIONES DE VIDA DEL HUMEDAL Y DE SU BIODIVERSIDAD.										
Proyecto 1.2. Recuperación del humedal										
Actividad	Cantidad	Valor Unitario	Valor Total							
1.1.1 Rocería y limpieza periódica encaminada a reducir la proliferación y permanencia de especies herbáceas alrededor y dentro del humedal-Ha	2	\$ 25.000.000	\$ 50.000.000							
1.1.2 Aislamiento del humedal mediante la implementación de cercas vivas con especies nativas-ml	1	\$ 27.437.649	\$ 27.437.649							
1.2.3 Manejo, control (físico o químico) y erradicación de poblaciones de Achatina fulica (Caracol africano)	2	\$ 20.000.000	\$ 40.000.000							
Total	******	*********	\$ 117.437.649							

PROGRAMA 2 INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN

Proyecto 2.1. Ampliación del conocimiento sobre la fauna y flora silvestre.

Justificación

La recuperación de la diversidad y el crecimiento de las poblaciones de fauna y flora dependen directamente de las políticas de manejo que se implementen. Por ello se hace necesario ampliar el conocimiento que se tiene sobre las especies silvestre a fin de establecer lineamientos de manejo de las mismas, toda vez que se está presentando una fuerte presión natural sobre algunas de ellas, la cual se ve agravada por las actividades antrópicas.

Además, la alta demanda nacional e internacional de estos recursos ha conllevado cada día a incrementar el número de especies objeto de uso, es por eso que es necesario realizar estudios para conocerla, establecer planes de manejo y controlar los aprovechamientos que se hagan ilegalmente. Todos estos estudios deben ser incluidos en los planes de desarrollo de los municipios y los planes trienales de las corporaciones a fin de tener un norte frente al control y uso de los recursos. Lo cual permitirá la recuperación de las áreas degradadas y optimizará el uso de los recursos.

Objetivo general

Generar conocimiento sobre la fauna y flora silvestre del humedal que permita conocer su estado, estructura y composición, a fin de establecer programas de manejo para este recurso en particular.

Objetivos específicos

- Determinar la composición y estructura de las comunidades de fitoplancton, macrófitos y demás grupos de flora (plantas vasculares y no vasculares), así como de zooplancton, macroinvertebrados acuáticos, edafofauna, lepidópteros, peces, herpetos, aves y mamíferos que habitan en el área de interés.
- Identificar las especies que se encuentran en alguna categoría de amenaza presentes en el área de estudio.
- Realizar monitoreos de fauna silvestre en la zona con el fin de obtener información sobre tamaños poblacionales de las especies.

Metas

- Establecimiento de programas de conservación y aprovechamiento del recurso "fauna" y "flora" a partir del conocimiento generado.
- Inventario actualizado de flora y fauna asociada al humedal

Actividades

- Caracterización de la fauna y flora silvestre asociada al humedal y su área de influencia.
- Análisis físico-químico y bacteriológicos del cuerpo de agua
- Indicadores

- Inventario y censo consolidado de la fauna y flora silvestre.
- Listado de especies amenazadas o vulnerables que se encuentran establecidas o hacen uso transitorio del humedal y su área de influencia.
- Listado de especies de interés comercial y posibles programas de aprovechamiento sostenible para cada una de ellas.
- Indicador de Calidad del agua del humedal

Partes involucradas:

- 1. CORTOLIMA
- 2. Instituciones educativas.
- 3. Entidades locales: alcaldía municipal.

Prioridad: corto y mediano plazo.

PROGRAMA 2. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN										
Proyecto 2.1. Ampliación del conocimiento sobre la fauna y flora silvestre.										
Actividades	1	2	3	4	5	6	7	8	9	10
2.1.1 Caracterización Flora asociada al Humedal (Fitoplancton, Macrophitas, Arbóreas)					Х					
2.1.2- Caracterización fauna asociada al humedal (Zooplancton, Macroinvertebrados, Herpetos, Aves, Mamíferos					Х					
2.1.3 Análisis de Calidad de Agua					Х					

Costos

PROGRAMA 2. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN											
Proyecto 2.1. Ampliación del co	nocimiento sobre	e la fauna y flora silves	tre.								
Actividad Cantidad Valor Unitario Valor Total											
2.1.1 Caracterización Flora	Cantidad	Valor Officatio	valui i utai								
	_	\$ 25 000 000 00	Ф от ооо ооо оо								
asociada al humedal	1	\$ 25.000.000,00	\$ 25.000.000,00								
(Fitoplancton, Macrophitas,											
Herbacaeas Arbóreas)											
2.1.2-Caractgerizacion Fauna											
asociada al humedal	1	\$ 32.000.000,00	\$ 32.000.000,00								
(Zooplancton,											
Macroinvertebrados,											
Herpetos, Aves, Mamíferos											
2.1.3 Análisis de Calidad de	1	\$ 6.000.0000	\$ 6.000.000,00								
Agua			,								
	******	******									
TOTAL	******	**********	\$ 63.000.000,00								

Proyecto 2.2. Programa de educación ambiental y apropiación social participativa de los humedales.

Justificación

La exigencia de poner en marcha un programa de educación y sensibilización ambiental comunitaria se basa en el propósito de informar, formar y sensibilizar a la población de la necesidad de preservar el patrimonio ambiental, puesto que la responsabilidad no puede recaer única y exclusivamente en la administración, sino que será fruto de un proyecto de construcción colectiva.

En este marco se concibe la educación y sensibilización ambiental como una herramienta o instrumento para la gestión, coherente con los principios inspiradores de la mancomunidad. Siendo una acción complementaria y coherente con la gestión en propenda a la conservación del humedal.

La sensibilización combina integralmente acciones de transmisión directa y aprovechamiento, creando oportunidades para establecer un diálogo personal con la comunidad y los propietarios.

La educación ambiental formal y no formal ofrece un conjunto integrado de recursos materiales y humanos que puedan utilizarse para diseñar, adaptar, organizar y desarrollar sus propias actividades o programaciones de educación ambiental en torno al humedal.

Este proceso también involucra la comunidad estudiantil ya que desde las aulas de clase podría darle continuidad al proceso de sensibilización con el fin de que sus alumnos sean los multiplicadores y quienes lleven esta cultura ambiental para las generaciones futuras.

Objetivo general

Lograr comunidades organizadas y con capacidad de definir sus políticas y planes de desarrollo como respuesta a un modelo de gestión participativa y pedagógica para la conservación de los humedales de las zonas bajas del Tolima.

Objetivos específicos

- Fortalecer la organización comunitaria y la participación ciudadana.
- Contribuir a transformar hábitos culturales poco amigables con el medio ambiente y sus recursos naturales para valorar territorio como un bien comunitario e histórico.
- Implementar una educación y una formación pedagógica desde lo propio para valorar y utilizar los recursos eficiente y sosteniblemente.

Metas

• Establecer organizaciones comunitarias y grupos poblacionales involucrados e interactuando en el proceso de desarrollo sostenible DEL Humedal.

• Comunidades con conocimiento de su territorio en términos de extensión, linderos, áreas estratégicas, bienes, servicios y potencialidades.

Actividades

- Realización de talleres educativos teórico-prácticos "Cuando Cuentas Cuencas-Humedales a Todo Color".
- Señalización del humedal mediante la instalación de vallas informativas ambientales.

Indicadores

- Número de talleres realizados /No talleres programados
- Número de vallas instaladas.

Responsables

- 1. Alcaldía municipal.
- 2. CORTOLIMA.
- 3. Comunidad.
- 4.Gobernacion del Tolima

Prioridad: Corto plazo.

PROGRAMA 2. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN										
Proyecto 2.2 Educación ambiental y apropiación social participativa de los humedales.										
Actividades	1	2	3	4	5	6	7	8	9	10
2.2.1 Talleres educativos teórico-prácticos "Cuando Cuentas Cuencas-Humedales a Todo Color".	1	1	*	*	*	2	*	*	*	2
2.2.2 Taller educativo Tráfico llegal de Fauna y Flora	*	1	*	*	*	1	*	*	*	1
2.2.3 Material Didáctico de Humedales	50	50	*	*	*	100	*	*	*	200
2.2.3 Señalización del Humedal	3	*	*	*	*	*	*	*	*	*

Costos

PROGRAMA 2. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN											
Proyecto 2.2 Educación ambiental y apropiación social participativa de los humedales.											
Actividad	Cantidad	antidad Valor Unitario V									
2.2.1 Taller Educativos teórico- prácticos "Cuando Cuentas Cuencas-Humedales a Todo Color".	6	\$ 5.000.000,00	\$ 30.000.000,00								
2.2.2 Taller educativo Tráfico llegal de Fauna y Flora	3	\$ 3.000.000,00	\$ 9.000.000,00								

2.2.3 Material Didáctico de Humedales (Cartilla)	300	\$ 6.000,00	\$ 18.000.000,00
2.2.3 Señalización del Humedal (Vallas)	3	\$ 7.500.000,00	\$ 22.500.000,00
TOTAL	*****	******	\$ 40.500.000,00

PROGRAMA 3. MANEJO SOSTENIBLE.

Manejo y uso sostenible

Proyecto 3.1. Control y seguimiento.

Justificación

Todas las actividades incluidas dentro del Plan de Manejo requieren el seguimiento permanente en su ejecución con el fin de garantizar oportunamente el desarrollo de estas conforme a lo propuesto, y así lograr la conservación y uso sostenible de los recursos asociados al humedal. Así mismo, el seguimiento garantiza que se tomen medidas de acción preventiva o correctiva oportunas que prevengan algún aspecto que ponga en riesgo el bienestar del humedal. Por otro lado, con el control y seguimiento se logra detallar el avance de ejecución, como también el estado de recuperación y las condiciones del humedal.

Objetivo general

Implementar estrategias de control y vigilancia que contribuyan al bienestar de las comunidades locales y la promoción de la conservación del humedal.

Objetivos específicos

 Desarrollar actividades de control y vigilancia a los procesos de recuperación del humedal.

Metas

• Ejercer a través de CORTOLIMA procesos de control y vigilancia que garanticen en un 100% la implementación del plan de manejo del humedal.

Actividades.

- Operativos de control y vigilancia a los procesos de recuperación del humedal.
- Creación y operación del comité interinstitucional del humedal.

Indicadores.

- Número de operativos de control y vigilancia realizados en torno la ejecución de actividades del plan de manejo del humedal.
- Número de reuniones de comité.

Responsables 1. CORTOLIMA.

- 2. Alcaldía municipal.
- 3. Gobernación.
- 4. Policía ambiental.
- 5. Academia.

PROGRAMA 3. MANEJO SOSTENIBLE.										
Proyecto 3.1. Control y seguimiento.										
Actividades	1	2	3	4	5	6	7	8	9	10
3.1.1 Operativos de control, seguimiento y vigilancia del Humedal	*	1	1	1	1	1	1	1	1	1
3.1.2 Conformación Comité Interinstitucional del Humedal	1	1	1	1	1	1	1	1	1	1

Costos

PROGRAMA 3. MANEJO SOSTENIBLE.											
Proyecto 3.1. Control y seguimiento.											
Actividad	Actividad Cantidad Valor Unitario Valor To										
3.1.1 Operativos de control, seguimiento y vigilancia del Humedal	9	\$ 500.000,00	\$ 4.500.000,00								
3.1.2 Conformación Comité Interinstitucional del Humedal	10	\$ 400.000,00	\$ 4.000.000,00								
Total	****	******	\$ 9.500.000,00								

9.9 PLAN DE TRABAJO ANUAL

Programas y Proyectos		PLAN DE TRABAJO ANUAL (AÑO)										
Programas y Proyectos	1	2	3	4	5	6	7	8	9	Х		
PROGRAMA 1. RECUPERACIÓN DE LAS CONDICIONES DE VIDA DEL HUMEDAL Y DE SU BIODIVERSIDAD.												
Proyecto 1.1. Recuperación del humedal												
Actividades												
1.1.1 Rocería y limpieza periódica encaminada a reducir la proliferación y permanencia de especies herbáceas alrededor y dentro del humedal		*	*	Х	*	*	*	x	*	*		
1.1.2 Aislamiento del humedal mediante la implementación de cercas vivas con especies nativas	*	Х	*	*	*	*	*	*	*	*		
1.1.3 Manejo, control (físico o químico) y erradicación de poblaciones de Achatina fulica (Caracol africano)	Х	*	*	Х	*	*	*	Х	*	*		
PROGRAMA 2. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZA	CIÓ	N										

Proyecto 2.1. Ampliación del conocimiento sobre la fauna y flora silvestre.										
2.1.1 Caracterización Flora asociada al Humedal (Fitoplancton,	*	*	*	*	1	*	*	*	*	*
Macrophitas, Arbóreas)					ı					
2.1.2- Caracterización fauna asociada al humedal (Zooplancton,	*	*	*	*	1	*	*	*	*	*
Macroinvertebrados, Herpetos, Aves, Mamíferos										
2.1.3 Análisis de Calidad de Agua	*	*	*	*	1	*	*	*	*	*
Proyecto 2.2 Educación ambiental y apropiación social										
participativa de los humedales.										
2.2.1 Talleres educativos teórico-prácticos "Cuando Cuentas	1	1	*	*	*	2	*	*	*	2
Cuencas-Humedales a Todo Color".	'	'								
2.2.2 Taller educativo Tráfico llegal de Fauna y Flora	*	1	*	*	*	1	*	*	*	1
2.2.3 Material Didáctico de Humedales	50	50	*	*	*	100	*	*	*	200
2.2.3 Señalización del Humedal	3	*	*	*	*	*	*	*	*	*
PROGRAMA 3. MANEJO SOSTENIBLE.										
Proyecto 3.1. Control y seguimiento.										
3.1.1 Operativos de control, seguimiento y vigilancia del Humedal	*	1	1	1	1	1	1	1	1	1
3.1.2 Conformación Comité Interinstitucional del Humedal	1	1	1	1	1	1	1	1	1	

9.10 COSTOS DEL PLAN DE MANEJO AMBIENTAL

Programas y Proyectos		PLAN DE TRABAJO ANU (AÑO)									L
	1	2	47	3 4	5		6	7	8	9	X
PROGRAMA 1. RECUPERACIÓN DE LAS CONDICIONES DE VIDA DEL HUMEDAL	ΥD	E S	Sl	J BI	OD	IV	ER	SIE	DAE	Э.	
Proyecto 1.1. Recuperación del humedal											
1.1.1 Rocería y limpieza periódica encaminada a reducir la proliferación y permanencia de especies herbáceas alrededor y dentro del humedal				\$	50.	00	0.0	00	1		
1.1.2 Aislamiento del humedal mediante la implementación de cercas vivas con especies nativas				\$	27.	43	7.6	49	1		
1.1.3 Manejo, control (físico o químico) y erradicación de poblaciones de Achatina fulica (Caracol africano)	\$ 40.000.000										
SUBTOTAL				\$	117.	.4	37.0	649	•		
PROGRAMA 2. INVESTIGACIÓN, EDUCACIÓN Y CONCIENTIZACIÓN											
Proyecto 2.1. Ampliación del conocimiento sobre la fauna y flora silvestre. 2.1.1 Caracterización Flora asociada al Humedal (Fitoplancton, Macrophitas,											
Arbóreas)				\$ 2	5.00	00	.00	0,0	10		
2.1.2- Caracterización fauna asociada al humedal (Zooplancton, Macroinvertebrados, Herpetos, Aves, Mamíferos				\$ 3	2.00	00	.00	0,0)0		
2.1.3 Análisis de Calidad de Agua				\$ 6	6.00	0.	000),0(0		
SUBTOTAL				\$ 6	3.00	00	.00	0,0	0		
Proyecto 2.2 Educación ambiental y apropiación social participativa de los humeo	lale	s.									
2.2.1 Talleres educativos teórico-prácticos "Cuando Cuentas Cuencas- Humedales a Todo Color".				\$ 3	0.0	00).00	0,0)0		
2.2.2 Taller educativo Tráfico llegal de Fauna y Flora				\$	9.00	00.	.000),0	0		

Plan de Manejo Ambiental (PMA) Humedal Caracolizal

2.2.3 Material Didáctico de Humedales	\$ 18.000.000,00
2.2.3 Señalización del Humedal	\$ 22.500.000,00
SUBTOTAL	\$ 40.500.000,00
PROGRAMA 3. MANEJO SOSTENIBLE.	
Proyecto 3.1. Control y seguimiento.	
3.1.1 Operativos de control, seguimiento y vigilancia del Humedal	\$ 4.500.000,00
3.1.2 Conformación Comité Interinstitucional del Humedal	\$ 4.000.000,00
SUBTOTAL	\$ 9.500.000,00
TOTAL	\$ 230.437 6.649

BIBLIOGRAFÍA

BIBLIOGRAFÍA

Acosta-Galvis, A. R. (2000). Ranas, salamandras y caecilias (Tetrápoda: Amphibia) de Colombia. Biota Colombiana, Vol. 1. Bogotá, No. 3. 2000, p.289.

Adamus, P., T.J. Danielson y A. Gonyaw. (1991). Indicators for Monitoring Biological Integrity of Inland, Freshwater Wetlands. U.S. Environmental Protection Agency. Washington, DC.

Aguilar, V. (2003). Aguas continentales y diversidad biológica de México: un recuento actual. Biodivérsitas 8(48): 1-16.

Alberti, M. & J. Parker. (1991). Indices of environmental quality: the search for credible measures. Environ. Impact Assess. Rev. 11: 95-101.

Arana, C. & Salinas, L. (2003). Flora vascular de los humedales de Chimbote, Perú. Lima, Perú. Universidad Nacional de San Marcos.

Buckup, P. (2004). Introdução à sistematica de peixesneotropicais : Chaves de Identificação. (rev 3) (p. 46). Río de Janeiro: Dept de Vertebrados, Museu Nacional UFRJ.

Barba E (2004) Valor del hábitat: Distribución de peces en humedales de Tabasco. ECOfronteras 25: 9-11

Beltrán, O. L., & Trujillo, S. G. (1999). Caracterización fisicoquímica del tramo del cauce del río Alvarado comprendido entre la Gaviota y Caldas Viejo. Municipios de Ibagué y Alvarado departamento del Tolima. Especialización en Gestión ambiental y Evaluación de Impacto Ambiental, Universidad del Tolima, Ibagué.

BirdLife International (2000). Threatened Birds of the World. Lynx Edicions, BirdLife International. Barcelona, Cambridge.

Blanco y canevari. (2000) Seminario-Taller sobre monitoreo ambiental. Rocha, noviembre de 1998 / Walter Norbis, Luiza Chomenko (coordinadores). Rocha, UY: PROBIDES, 2000. 246 p. (Documentos de Trabajo).

Blanco, D. (2000). Los humedales como hábitat de las aves acuáticas. Buenos Aires Argentina:UNESCO.

Bucher, E. H. & Herrera, G. (1981). Comunidades de aves acuáticas de la laguna Mar Chiquita (Córdoba, Argentina). Ecosur 8(15): 91-120.

Camargo, A.M. & Lasso, A. O. (2002). Evaluación ecológica de la biodiversidad de humedales en áreas de bosque seco tropical: una aproximación para los ecosistemas estratégicos de la granja de Armero. Tesis de Ingeniería Forestal. Universidad del Tolima. Ibagué. 135p.

Callaway, J.C., G. Sullivan, J.S. Desmond, G.D. Williams y J.B. Zedler. (2001). Assessment and Monitoring. En: J.B. Zedler (ed.). Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, Florida.

Canevari, P., Blanco, D. E., Bucher, E. H., Castro, G. & Davidson, I. (Eds.). (1998). Los Humedales de la Argentina: Clasificación, Situación Actual, Conservación y Legislación. Wetlands International Publ. 46, Buenos Aires, Argentina. 208+ii pp.

Cairns J. Disturbed Ecosystems as Opportunities for Research in Restoration Ecology. En: Jordan, W.R., Gilpin, M. Aber, J. (Eds.). Restoration Ecology. A Synthetic Approach to Ecological Research. Cambridge University Press; 1987. p. 307-320.

Cárdenas G.; Harvey C.; Ibrahim M.; Finegan B. (2003). Diversidad y riqueza de aves en diferentes hábitats en un paisaje fragmentado en Cañas Costa Rica. Agroforestería de las Américas Vol. 10. Pág. 78-85.

Cárdenas, L. & Salinas, N. (2006). Libro rojo de plantas de Colombia. Especies maderables amenazadas I parte. Santafé de Bogotá, Colombia: SINCHI.

Castaño-Mora, O. V. (Ed). (2002). Libro rojo de reptiles de Colombia. Libros rojos de especies amenazadas de Colombia. Instituto de ciencias Naturales-Universidad Nacional de Colombia, Ministerio del Medio Ambiente, Conservación internacional-Colombia. Bogotá, Colombia.

Castellanos, Z. A. de y Landoni, N., (1995). Mollusca Pelecypoda y Gastropoda. En: E. C. Lopretto y G. Tell (dirs.), Ecosistemas de Aguas Continentales. Metodologías para su estudio. Tomo 2. Ediciones Sur, La Plata, 759-801.

Castellanos, C. A. (2006) Los Ecosistemas de Humedales en Colombia. Revista luna azul. 2 p.

Castro, H.F. & G. H. Kattan. (1991). Estado del conocimiento y conservación de los anfibios del Valle del Cauca. p. 310-323. En: E. Florez y G. Catan. Memorias primer Simposio Nacional de Fauna del Valle del Cauca. INCIVA, Cali.

Castro-Roa, D. (2006). Composición y estructura de la comunidad de Characiformes en la cuenca del río Prado (Tolima-Colombia). Trabajo de grado Programa de Biología. Facultad de Ciencias Básicas. Universidad del Tolima. Ibagué. 169 -204 p.

CITES. Disponible en: http://www.cites.org/esp/disc/species.php

Cowardin, L. M., Carter, V., Golet, F. C. & LaRoe, E. T. (1979). Classification of wetlands and deep water habitats in the United States. Washington D.C:U.S. Fish and Wildlife Service.

Collins, S.L., J.V. Perino, J.L. Vankat. (1982). Woody vegetation and microtopography in the bog meadow association of Cedar Bog, a west central Ohio USA fen. American Midland Naturalist 108: 245-249.

Constitución Política de Colombia. (1991). Gaceta Constitucional No. 116 de 20 de julio de 1991.

Cuezzo, M. (2009). Mollusca Gastropoda. En: Domínguez, E. & Fernández, H. Macroinvertebrados bentónicos sudamericanos, sistemática y biología. Fundación Miguel Lillo. Tucumán-Argentina. 654 p.

Dahl, G. (1971). Los Peces del Norte de Colombia. Bogotá, Ministerio de Agricultura, Instituto de Desarrollo de los recursos Naturales Renovables (INDERENA). 391 p.

Delgado, P. Y S. M. Steadman. (2008). Humedales y peces una conexión vital. Administración Nacional de los Océanos y la Atmósfera (NOAA). USA. 36p.

Domínguez, E. & Fernández, H. (2009). Macroinvertebrados bentónicos sudamericanos, sistemática y biología. Fundación Miguel Lillo. Tucumán-Argentina. 654 p.

Dugan, P. (1992). Conservación de humedales. Un análisis de temas de actualidad y acción inmediata. UICN. Gland, Suiza. 130-470pp.

Eigenmann, C. H. (1908) Preliminary descriptions of new genera and species of tetragonopterid characins. (Zoölogical Results of the Thayer Brazilian expedition.). Bulletin of the Museum of Comparative Zoology, 52 (6): 91-106.

Eigenmann, C. (1922). The fishes of the Northwestern South America, part I. The fresh-water fishes of Northwestern South America, including Colombia, Panamá, and Pacific slopes of Ecuador, y Perú, together with an appendix upon the fishes of the río Meta in Colombia. En: Mem. Carnegie Mus. Vol.9, No. 1. p. 1-346.

Eigenmann, C. J. (1912). Some Results from An ichthyological Reconnaissance of Colombia, South America. Contributions from the Zoological Laboratory of Indiana University. Indiana University Studies. No. 8. p. 27.

Elmberg, J., Nummi, P., Pöysä, H. y Sjöberg, K. (1994). Relationship between species number, lake size and resource diversity in assmblages of breeding waterfowl. Journal of Biogeography, 21: 75-84.

Esquivel, H. (1997). Herbarios en los jardines botánicos. Facultad de Ciencias Básicas, Universidad del Tolima. Ibagué (Tolima), Colombia.

Esquivel, H. (2009). Flora arbórea de la ciudad de Ibagué. Ibagué, Tolima: Editorial Universidad del Tolima.

Figuerola, J., & Green, A. J. (2003). Aves acuáticas como bioindicadores en los humedales. In Ecología, manejo y conservación de los humedales (pp. 47-60). Instituto de Estudios Almerienses.

Faña, B. J. (2000). Evaluación Rápida de la Contaminación Hídrica. Ediciones G.H.e.N. Grupo Hidro-ecológico Nacional, Inc. (G.H.e.N). Republica Dominicana. [en línea]. [Enero de 2000]. Disponible en: http://www.ambiente-ecologico.com/067-02 2000/juannicolasfania67.htm

Farinha, J.C., L.T. Costa, G. Zalidis, A. Matzavelas, E. Fitoka, N. Heker & P.T. Vives. (1996). Mediterrenean wetland inventory: hábitat description system. Lisboa. MedWet. ICN, Wetlands International, Greek Biotope, EKBY

Frost, Darrel R. (2013). Amphibian Species of the World: an Online Reference. Version 5.6 (9 January 2013). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.

Fundación Mamaskato. (2008). Plan de ordenamiento y manejo de la subcuenca hidrográfica De los ríos sambingo-hato viejo, municipios de Bolívar, Mercaderes y Florencia, Departamento del Cauca.

Gentry, A. H. (1993). A field guide to the families and genera of woody plants of northwest south America (Colombia, Ecuador, Perú) whit supplementary notes on herbaceous taxa. Conservation International, Washington D. C.

Green, A. J. (1996). Analyses of globally threatener Anatidae in relation to threats, distribution, migration patterns and habitat use. Conservation Biology, 10: 1435-1445.

Growns, I. O., Pollard, D. A. & Harris, J. H. (1996). A comparison of electric fishing and gillnetting to examine fish communities. Fisheries Management and Ecology, 3. 13-34.

Guerrero-Kommritz, J. (1997). Ensayos sobre pesca eléctrica en Colombia. Dahlia, 2: 71-77.

Hanson, P.; Springer, M. & Ramirez, A. (2010). Introducción a los grupos de macroinvertebrados acuáticos. Revista de Biología Tropical. 58 (suppl. 4): 3-37.

Harvey, C.A., C. Villanueva, J. Villacís, M. Chacon, D. Muñoz, M. López, M. Ibrahim, R. Gómez, R. Taylor, J. Martínez, A. Navas, J. Sáenz, D. Sánchez, A. Medina, S. Vilchez, B. Hernández, A. Pérez, F. Ruiz, F. López, I. Lang, S. Kunth & F. Sinclair. (2003). Contribución de las cercas vivas a la productividad e integridad ecológica de los paisajes agrícolas en América Central. RAFA. 10: 30-39.

Heyer, W. R., M.A. Donnelly, R. W. McDiarmid, L.C. Hayek, M.S. Foster. (1994). Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians. S. I. Press.

Hilty, S. L. & Brown, W. L. (2001). Guia de las aves de Colombia, Edicion en español. Cali, Colombia: American bird conservation (ABC).

House, M. (1990). Water quality indices as indicators of ecosystem change. Environ. Monit. Assess. 15: 255-263.

Kattan, G. y Murcia, C. (1999). Informe especial: Investigación en biología de la conservación en Colombia. Instituto de investigación de recursos biológicos Alexander Von Humboldt. Informe especial (8). 3-12p.

Keddy, P. A., Lee, H. T. & Wisheu, I. C. (1993). Chosing Indicators of Ecosystem Integrity: Wetlands as a Model System. En S. Woodeley, J. Kay & G. Francis (eds), Ecologial Ingrity and the Management of Ecopsystems (pp. 61-82). Estados unidos: St. Lucie Press.

Kushlan, J. A. (1993). Waterbirds as bioindicators of wetland change: are they a valuable tool ?; in Moser M., Prentice R.C. and van Vessem J. (Eds.): Waterfowl and Wetland Conservation in the 1990s -A global perspective. IWRB Spec. Publ. No. 26: 48-55. Slimbridge, UK.

Lindig-Cisneros, R. Y J. B. Zedler. (2005). La restauración de humedales. En: Temas sobre restauración ecológica. Sánchez, O., E. Peters, R. Márquez-Huitzil, E. Vega, G. Portales, M. Valdez y Danae Azuara (Eds). Instituto Nacional de Ecología (INE-SEMARNAT). México, D. F. 256p.

Lobón-Cerviá, J. (1996). Response of a stream fish assemblage to a severe spate in northern Spain. Trans. Amer. Fish. Soc., 125: 913-919.

López-Lanús, B. & Blanco, D. E. (2005). El Censo Neotropical de Aves Acuáticas 2004. Global Series No. 17, Wetlands International. Buenos Aires, Argentina. 9 p

López, R. & Montero, G. (2005). Manual de identificación de especies forestales en bosques naturales con manejo certificable por comunidades. Santafé de Bogotá, Colombia: SINCHI.

Lopretto, E. y Tell, G. (1995). Ecosistemas de aguas continentales. Argentina: Ediciones Sur. 1401 p.

Lozano-Zarate, Y. (2008) .Diversidad, distribución, abundancia y ecología de la familia Characidae (Ostariophysi: Characiformes) en la cuenca del río Totare (Tolima-Colombia). Tesis de Pregrado. Programa de Biología., Facultad de Ciencias Básicas, Universidad del Tolima. Ibagué.216p.

Lynch, J. D. (1998). La riqueza de la fauna anfibia de los andes colombianos. Innovación y Ciencia 7 (4): 46-51.

Machado, T. A. (1989). Distribución ecológica e identificación de los coleópteros acuáticos en diferentes pisos altitudinales del departamento de Antioquia. Medellín. Proyecto de investigación. Universidad de Antioquia. Facultad de ciencias exactas y naturales. 323 p.

Maldonado-Ocampo, J., Ortega-Lara, A., Usma-Oviedo, J. S., Galvis-Vergara, G., Villa-Navarro, F. A., Vasquez-Gambona, L., Prada-Pedreros, S & Ardila C. (2005). Peces de los Andes de Colombia. 1 ed. Bogotá D.C. Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 346 p.

MAVDT (2010). Metodología general para la presentación de estudios ambientales. Ministerio de Ambiente Vivienda y Desarrollo Territorial. Bogotá. p 20.

Ministerio del Medio Ambiente-Instituto de Investigaciones de Recursos Biológicos Alexander Von Humboldt (1999). Humedales Interiores de Colombia: Bases Técnicas para su Conservación y Uso Sostenible.

Merrit, R. W. & Cummins, K. W. (Eds). (2008). An Introduction to the Aquatic Insects of North America. Third edition. Kendall/Hunt Publishing Company.

Miles, C. (1943). Los peces del río Magdalena. Ministerio de economía Nacional,

Ministerio del Medio Ambiente (2002). Política Nacional para Humedales Interiores de Colombia: Estrategia para su Conservación y Uso Sostenible. República de Colombia: autor. Mitsch, W & Gosselink, G. (2007). Wetlands. John Willey & Sons Inc. NY., USA. 582 pp

Moyle, P & Cech, J. (1988). Fishes: An introduction to ichthyology. 2 ed. New Jersey: Prentice Hall.. 559 p.

Muñoz-Quesada, F. (2004). El Orden Trichoptera (Insecta) en Colombia, II: inmaduros y adultos, consideraciones generales. pp. 319 – 349. En: Fernández, F.; M. Andrade-C., & G. Amat, (Eds.). Insectos de Colombia. Vol. III. Bogotá: Universidad Nacional de Colombia – Instituto Humboldt (Colombia).

Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Tree. 10 (2) : 58 - 62p.

Musilova, Z., Rican, O. & Novak, J. (2009). Phylogeny of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae) based on morphological and molecular data, with the description of a new genus. Zool. Syst. Evol. Res. doi: 10,1111/j.439-0469.

Naranjo L.G. y Bravo G.A. (2006). Estado del conocimiento sobre aves acuáticas en Colombia. En: Chaves M.E. y Santamaría M. (eds.). 2006. Informe nacional sobre

el avance en el conocimiento y la información de la biodiversidad 1998-2004. Tomo 2. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá D.C., Colombia. 394 p.

Naranjo. L.G. (1997). Humedales de Colombia. Ecosistemas amenazados. En: Sabanas, vegas y palmares. El uso del agua en la Orinoquia colombiana. Universidad Javeriana – CIPAV

Needham, J. G & Needham. (1991). Guía para el estudio de los seres vivos de las aguas dulces. Barcelona: Reverté. 131 p.

Nelson, J. (2006). Fishes of the World. New Jersey: John Wiley & Sons, Inc. Fourth., p. 539

Perdomo, G. A Y Gomez, M. M. (2000). Estatuto de aguas para el área de jurisdicción de la corporación autónoma regional del Tolima. 3° ed. Ibagué: CORTOLIMA, p. 21-28

Pineda-Santis, HR. (2004). Estudio genético de las cachamas (subfamilia Serrasalminae) en poblaciones naturales y en cautiverio en Colombia. Rev Col Cienc Pec.17(S):62-63.

Pointier, J-P.; Yong, M. & Gutiérrez, A. (2005). Guide to the Freshwater molluscs of Cuba. ConchBooks. ISBN 3-925919-75-9. 119 p.

Pough, F.H., R.M. Andrews, J.E. Cadle, M.L. Crump, A.H. Savitzky & K.D. Wells. (1998). Herpetology. Prentice Hall, New Jersey. 577p.

Prada, J.E. (2005). Caracterización, compilación y complementación de la información biofísica y ecológica de los humedales de la cuenca mayor del río Prado para la Corporación Autónoma Regional del Tolima CORTOLIMA. Tesis de Biología. Universidad del Tolima. Ibagué. 58p.

Prat, N.; Ríos, B.; Acosta, R. & Rieradevall, M. (2009). Los macro invertebrados como indicadores de calidad de las aguas. pp 631-654. En: Domínguez, E. & Fernández, H. (Eds). Macro invertebrados bentónicos sudamericanos, sistemática y biología. Fundación Miguel Lillo. Tucumán, Argentina. 654 p.

Ralph, C. J., Geupel, G. R., Pyle, P., Martin, T. E. & Desante, D. F. (1993). Handbook of field methods for monitoring landbirds. Gen. Tech. Rep. PSW-GTR-144-www. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 41 p.

Ramírez, A. & Viña, G. (1998) Limnología Colombiana: aportes a su conocimiento y estadística de análisis. Bogotá. Fundación universidad de Bogotá Jorge Tadeo Lozano. ISBN 958- 9029-06-X.

RAMSAR. (2002). Compendio del inventario de humedales. CRQ.

- Reinoso Flórez, G.; Villa Navarro, F.; Losada, S.; García Melo, J.E. & Vejarano Delgado, M.A. (2010a). Biodiversidad faunística de los humedales del departamento del Tolima. Informe técnico, Corporación Autónoma Regional del Tolima Cortolima. 513 p.
- Remsen, J. V., Cadena, Jaramillo, A., Nores, M., Pacheco, J. F., Robbins, M. B., Schulenberg, T. S., Stiles, F. G., Stotz, D. F. & Zimmer, K. J. (2013). A classification of the bird species of South America. American Ornithologists' Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html.
- Renjifo, L. M., Franco-Maya, A. M., Amaya-Espinel, J. D., Kattan, G. H. & Lopez-Lanus, B. (2002). Libro rojo de aves de Colombia. Serie libros rojos de especies amenazadas de Colombia. Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt y Ministerio del Medio Ambiente. Bogota, Colombia
- Restall, R., Rodner, C. & Lentino, M. (2006). Birds of Northern South America: An Identification Guide, Volume 1: Species Accounts. Christopher Helm. Helm Identification Guides.
- Restrepo C. y Naranjo L.G. (1987). Recuento histórico de la disminución de humedales y la desaparición de aves acuáticas en el Valle del Cauca, Colombia. pp. 43-45. En: Álvarez, H., Kattan G. y Murcia C. (eds.). Memorias III Congreso de Ornitología Neotropical. Cali, Colombia.
- Roda, J., Franco, A. M., Baptiste, M.P., Múnera, C. & Gómez, D. M. (2003). Manual de identificación CITES de aves de Colombia. Bogotá, Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Serie de Manuales de Identificación CITES de Colombia
- Rojas, A. (2011). Flora urbana del área metropolitana de Bucaramanga. Bucaramanga, Colombia: Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga CDMB.
- Roldán G. & Ramírez J. (2008). Fundamentos de limnología neotropical 2ª Edición. Editorial Universidad de Antioquia. Medellín . ISBN 978-958-714-188-3. 440
- Roldán, G. (1996). Guía para el estudio de los macroinvertebrados acuáticosdel departamento de Antioquia. Fondo para la Protección del Medio Ambiente "José Celestino Mutis"-FEN COLOMBIA- Fondo colombiano de Investigaciones Científicas y Proyectos Especiales "Francisco José de Caldas"-COLCIENCIAS-Universidad de Antioquia. Colombia. 217 p.
- Roldán, G. (1999). Los Macroinvertebrados y su valor como indicadores de la calidad del agua. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Vol XXIII (88).

Roldán, G. (2003). Bioindicación de la calidad del agua en Colombia : Uso del método BMWP/Col. Medellín, Colombia : Editorial Universidad de Antioquia. 170 p. ISBN 958-655-671-8.

Rosemberg, D.M. & Resh, V.H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman y Hill. 48p.

Rueda-Almoacid, J. V., J. D. Lynch & A. Amézquita (eds). (2004). Libro rojo de anfibios de Colombia. Serie de libros rojos de especies amenazadas de Colombia. Conservación Internacional Colombia, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Ministerio de Medio Ambiente. Bogotá, Colombia. 384 p.

Rueda-Almonacid, J.V. (1999). Anfibios y reptiles amenazados de extinción en Colombia. Revista de la Academia Colombiana de Ciencias, 23: 475-498.

Salaman, P., Donegan, T. & Caro, D. (2009). Listado de aves de Colombia 2009. Conservación colombiana 8: 1-89.

Samper, D. (1999) Colombia Caminos del agua. Ed. Banco de Occidente, Santa Fé de Bogotá, primera edision.

Samper, C. (2000). Ecosistemas Naturales, Restauración Ecológica e Investigación. Ed. Banco de Occidente, Santa Fé de Bogotá, primera edision.

Scott. D.A. & Carbonell, M. (1986). Inventario de humedales de la Región Neotropical. Slimbirdge, UK: IWRB.

Sección de Piscicultura, Pesca y Caza. Bogotá. Colombia.

Scott, D.A. & T.A. Jones. (1995). Classification and Inventory of Wetlands. A Global Overview. Vegetatio 118: 3-1|6.

Segnini, S. & Chacón, M. (2005). Caracterización fisicoquímica del hábitat interno y ribereño de ríos andinos en la cordillera de Mérida, Venezuela. En: ECOTRÓPICOS (Sociedad Venezolana de Ecología). Vol 18., No 1. p 38-61.

Sutherland, W. J. (1998). The effect of local change in habitata quality on populations of migratory species. Journal of Animal Ecology, 35: 418-421.

Terneus, E. (2002). Comunidades de plantas acuáticas en lagunas de los páramos del Norte y Sur del Ecuador. Caldasia, 24 (2).

Titus, J.H. (1990). Microtopography and woody plant regeneration in a hardwood fllodplain swamp in Florida. Bulletin of the Torrey Botanical Club 117: 429-437.

Uetz, P. & Jirí Hošek (eds.). (2013). The Reptile Database, http://www.reptile-database.org, accessed Aug 1, 2013.

Vargas O. 2007. Guía Metodológica para la restauración ecológica del bosque altoandino. Universidad Nacional de Colombia. Bogotá.

Vargas, F. y F. Castro. (1999). Distribución y preferencias de microhábitat en anuros (Amphibia) en bosque maduro y áreas perturbadas en Anchicayá, Pacífico colombiano. Caldasia 21:95-109.

Vargas R., O. (2011). "Los pasos fundamentales en la restauración ecológica". En: Vargas R., O., Reyes B., S. P. La Restauración Ecológica en la Práctica: Memorias del I Congreso Colombiano de Restauración Ecológica y II Simposio Nacional de Experiencias en

Restauración Ecológica, Bogota, D. C., Colombia, Ed. Universidad Nacional de Colombia.634p p19-40.

Villa-Navarro, F.A., Ortega-Lara, A., García-Melo J.E., Briñez, G.N., García-Melo, L.J. & Zúñiga, P.T. (2003). En: Villa-Navarro, F.A., Reinoso-Flórez, G., Bernal-Bautista, M.H. & Losada-Prado, S. (2003). Biodiversidad Faunística de la Cuenca del río Coello. Biodiversidad Regional Fase I. Grupo de Investigación en Zoología, Universidad del Tolima, Ibagué, Colombia. p. 390-413.

Viñals (2004): New tools to manage wetland cultural heritage. 5th European Regional Meeting of the RAMSAR Convention. Organizado por Convenio Internacional sobre Humedales o de RAMSAR. Yerevan (Armenia), 4-8 diciembre, 2004.

Young, B. E.; Lips K. R.; Reaser, J. K.; Ibañes, R.; Salas, A. W.; Cedeño, J. R.; Colomna, L. A.; Ron, S.; La marca, E.; Meyer, J.R; Muñoz, A.; Bolaños, F.; Chaves, G. & Romo, D. (2001). Population declines and priorities for amphibians conservation in Latin America. Conservation biology 15 (5): 1213-1223.

Aguilar, V. (2003). Aguas continentales y diversidad biológica de México: un recuento actual. Biodivérsitas 8(48): 1-16.

Arana, C. & Salinas, L. (2003). Flora vascular de los humedales de Chimbote, Perú. Lima, Perú. Universidad Nacional de San Marcos.

Castellanos, C. A. (2015). Los ecosistemas de humedales en Colombia. *Revista Luna Azul (On Line)*, (13), 1-de.

Cardona, W., Cano, T., Gil, R., & Gómez, D. (2012). Caracterización de fauna (ranas y aves) y flora en seis humedales del departamento de Risaralda.

Caviedes Rubio, D. I., Delgado, D. R., & Olaya Amaya, A. (2016). Remoción de metales pesados comúnmente generados por la actividad industrial, empleando macrófitas neotropicales. Producción+ Limpia, 11(2), 126-149.

Carrillo-Fajardo, M., Rivera-Díaz, O., & Sánchez-Montaño, R. (2007). Caracterización florística y estructural del bosque seco tropical del Cerro Tasajero, San José de Cúcuta (Norte de Santander), Colombia. *Actualidades biológicas*, 29(86), 55-73.

Consorcio Río Garagoa. (2017), Fase diagnostica.03. Caracterización fisico-biótica. 3.12. Caracterización de la vegetación y flora. Código del documento: 201RG-D3121-V.03. Elaborado por Carlos Bernal.

Corporación Autónoma Regional del Tolima, CORTOLIMA. (2015). Plan de Manejo Ambiental Humedal Garcera.

Corporación Autónoma Regional del Tolima, CORTOLIMA. (2015). Plan de Manejo Ambiental Humedal Laguna el Silencio. Recuperado de https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/estudios/humedales/pma/PMA-Humedal-Laguna-el-Silencio.pdf

Esquivel, H., Botánico, D. J., & Von Humboldt, A. (1997). Herbarios en los jardines botánicos. *Facultad de Ciencias Básicas, Universidad del Tolima. Ibagué (Tolima), Colombia.*

Fajardo-Gutiérrez, F., Moreno, D., Medellín-Zabala, D., Rodríguez-Calderón, Á., Urbano-Apraez, S., Vargas, C. A., ... & Celis, M. (2020). Inventario de la flora vascular de Bogotá DC, Colombia. Pérez-Arbelaezia, 21(1), 17-49.

Gentry, A. H., & Vasquez, R. (1993). A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru): with supplementary notes on herbaceous taxa.

Guitian, R., & Rubinos, M. (2004). Notas sobre la flora de humedales del noroeste ibérico. *Botanica Complutensis*, 28, 61-66.

Hammer, Ø., Harper, D.A.T., & Ryan, P.D. 2001. PAST: Paleontological statistics software pckage for education and data analysis. Education, 4(1), 1–9.

Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456.

Kiersch, B., Mühleck, R., & Gunkel, G. (2004). Las macrófitas de algunos lagos altoandinos del Ecuador y su bajo potencial como bioindicadores de eutrofización. *Revista de biología tropical*, 52(4), 829-837.

Lemos, V. L., & González, A. M. T. (2015). Estructura y composición vegetal de un bosque seco tropical en regeneración en Bataclán (Cali, Colombia). *Colombia forestal*, 18(1), 71-85.

Linares, R., & Fandiño, M. C. (2009). Estado del bosque seco tropical e importancia relativa de su flora leñosa, islas de la Vieja Providencia y Santa Catalina, Colombia, Caribe suroccidental. *Revista de la Academia Colombiana de Ciencias*, 33(126), 1-12.

Magurran, A.E. (1988). Ecological diversity and its measurement. Princeton University Press, New Jersey, P. 179.

Martinez-Directora, C. S. B., Fernandez-Interventora, I. C. C., Graciano, E. S. P., Varón, I. M. J. J. R., Chamorro, I. L. E. R., Principales, I., ... & Cerpa, J. M. P. EQUIPO TÉCNICO.

Montoya, J. I., Ceballos, L., Casas, J. C., & Morató, J. (2010). Estudio comparativo de la remoción de materia orgánica en humedales construidos de flujo horizontal subsuperficial usando tres especies de macrófitas. Revista EIA, (14), 75-84.

Mora Gutiérrez, M. R. (2019). Valoración económica del recurso flora del humedal el Coroncoro de Villavicencio: uso del método de valoración contingente (MVC) mediante la regresión logística. *Universidad Cooperativa de Colombia, Villavicencio. Recuperado de http://repository. ucc. edu. co/handle/ucc/12112.*

Olascuaga-Vargas, D., Mercado-Gómez, J., & Sanchez-Montaño, L. R. (2016). Análisis de la vegetación sucesional en un fragmento de bosque seco tropical en Toluviejo-Sucre (Colombia). Colombia forestal, 19(1), 23-40.

Palomino Contreras, D. (2007). Estimación del servicio ambiental de captura del CO2 en la flora de los humedales de Puerto Viejo.

Pennington, R. T, Lewis, G. P. & Ratter, J. A. 2006. Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation. Boca Raton, FL: Taylor and Francis.

Ramirez, D. W., Aponte, H., & Cano, A. (2010). Flora vascular y vegetación del humedal de Santa Rosa (Chancay, Lima). *Revista Peruana de Biología*, 17(1), 105-110.

Rodríguez, Y. A. (2017). Conservación de humedales en el marco de gestión de cuencas hidrográficas. Puerto Rondón–Arauca. *REVISTA AMBIENTAL AGUA, AIRE Y SUELO*, 8(2).

Senhadji-Navarro, K., Ruiz-Ochoa, M. A., & Rodríguez Miranda, J. P. (2017). Estado Ecológico de algunos humedales colombianos en los últimos 15 años: una evaluación prospectiva. Colombia forestal, 20(2), 191-200.

Villareal, H. M., Álvarez, M., Córdoba-Córdoba, S., Escobar, F., Fagua, G., Gast, F., ... & Umaña, A. M. (2004). Manual de métodos para el desarrollo de inventarios de biodiversidad.

GIRALDO-CAÑAS, D. (2001). Análisis florístico y fitogeográfico de un bosque secundario pluvial andino, cordillera central (Antioquia, Colombia). *Darwiniana*, 39(3/4), 187-199. Retrieved from www.jstor.org/stable/23224213

American Ornithologist Union (AOU) (1998). *Check-list of North American birds*. American Ornithologist's Union: Washington, D.C.

Andrade, G.I. (1998). Los humedales del altiplano de Cundinamarca y Boyacá. Ecosistemas en peligro de desaparecer. En: E. Guerrero (Ed). *Una aproximación a los humedales en Colombia* (pp.59-72). Editora Guadalupe Ltda., Bogotá.

Andrade-C., M.G. (2011). Estado del conocimiento de la biodiversidad en Colombia y sus amenazas. Consideraciones para fortalecer la interacción ambiente-política. *Rev. Acad. Colomb. Cienc.*, *35*(137): 491-507.

Asociación Colombiana de Ornitología (ACO) (2020). Lista de referencia de especies de aves de Colombia-2020.v2. Asociación Colombiana de Ornitología. http://doi.org/10.15472/qhsz0p.

Avendaño, J.E., Bohórquez, I.C., Rosselli, L., Arzuza-Buelvas, D., Estela, F.A., Cuervo, A.M... (2017). Lista de chequeo de las aves de Colombia: Una síntesis del estado del conocimiento desde Hilty y Brown (1986). *Ornitología Colombiana*, 16.

Ayerbe-Quiñones, F. (2018). *Guía ilustrada de la avifauna Colombiana*. Wildlife Conservation Society: Bogotá.

Becker, P.H. (2003). Chapter 19: Biomonitoring with birds. En: B.A. Markert, A.M. Breure y H.G. Zechmeister (Eds). *Bioindicators and biomonitors* (pp. 677-736). Kidlington: Oxford.

Blanco, D.E. (1999). Tópicos sobre humedales subtropicales y templados de Sudamérica. En Malvarez, A.I. (Ed). *Los humedales como hábitat de aves acuáticas* (pp. 215-223). Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y Corinto-ORCYT: Montevideo.

Briggs, S.V., Lawler, W.G. y Thornton, S.A. (1997). Relationships between hydrological control of river red gum wetlands and waterbird breeding. *Emu*, 97: 31-42.

Castellanos, C. (2006). Los ecosistemas de humedales en Colombia. Universidad de Caldas. *Revista Luna Azul*, 1-5. Recuperado de http://lunazul.ucaldas.edu.co/downloads/Lunazul13_4.pdf.

Chaparro-Herrera, S., Echeverry-Galvis, M.Á., Córdoba-Córdoba, S. y Sua-Becerra, A. (2013). Listado actualizado de las aves endémicas y casi-endémicas de Colombia. *Biota Colombiana*, *14*(2): 113-150.

Corporación Autónoma Regional de Risaralda (CARDER) y Wildlife Conservation Society (WCS) (2012). Caracterización de fauna (ranas y aves) y flora en seis humedales del departamento de Risaralda: Informe técnico. Recuperado de http://www.carder.gov.co/intradocuments/webDownload/caracterizaci-n-de-fauna-ranas-y-aves-y-flora-en-sus-humedales-del-departamento-de-risaralda.

Dalsgaard, B., Martin, G.A., Olesen, M., Ollerton, J.M., Timmermann, A., Andersen, L.H. y Tossas, A.G. (2009). Plant-hummingbird interactions in the West Indies: floral specialization gradients associated with environment and hummingbird size. *Oecologia*, *159*(4): 757-766.

Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. y de Juana, E. (Eds) (1997) Handbook of the Birds of the World Alive. Lynx Edicions: Barcelona.

Díaz-Rivera, M.A. & Medina-Potier, J.T. (2019). Caracterización y determinación de fauna terrestre, de las clases de Aves y Mammalia, para la fase de diagnóstico en el proceso de revisión y actualización del POMCA del río Sumapaz, para la Corporación Autónoma Regional CAR. Universidad Distrital Francisco José de Caldas, Facultad de Ciencias Y Educación, Proyecto Curricular de Licenciatura en Biología, Bogotá D.C.

Donegan, T.M., McMullan, W.M., Quevedo, A. y Salaman, P. (2013). Revision of the status of bird species occurring or reported in Colombia 2013. Revisión del estatus de las especies de aves que existen o han sido reportadas en Colombia 2013. Conservación Colombiana, 19: 3-10.

Donegan, T.M., Quevedo, A., Verhelst, J.C., Cortés, O., Pacheco, J.A. y Salaman, P. (2014). Revision of the status of bird species occurring or reported in Colombia 2014. Revisión del estatus de las especies de aves que existen o han sido reportadas en Colombia 2014. *Conservación Colombiana*, 21: 3-11.

Donegan, T.M., Quevedo, A., Verhelst, J.C., Cortés-Herrera, O., Ellery, T. y Salaman, P. (2015). Revision of the status of bird species occurring or reported in Colombia 2015, with discussion of BirdLife International's new taxonomy. Revisión del estatus de las especies de aves que han sido reportadas en Colombia 2015, con una discusión de la nueva taxonomía de BirdLife Internacional. *Conservación Colombiana*, 23: 3-48.

Elmberg, J., Nummi, P., Pöysä, H. y Sjöberg, K. (1994). Relationship between species number, lake size and resource diversity in assmblages of breeding waterfowl. *Journal of Biogeography*, 2: 75-84.

Estrada-Guerrero, D.M., y Soler-Tovar, D. (2014). Las aves como bioindicadores de contaminación por metales pesados en humedales. *Ornitología Colombiana*, (14).

Gillespie, T.W. y Walter, H. (2001). Distribution of bird species richness at a regional scale in tropical dry forest of Central America. *Journal of Biogeography*, 28: 651-662.

Green, A.J. y Figuerola, J. (2003). Aves acuáticas como bioindicadores en los humedales. En: Paracuellos, M. (Ed). *Ecología, manejo y conservación de los humedales* (pp. 47-60). Instituto de Estudios Almerienses: España.

Grupo de Investigación en Zoología (GIZ) (2010a). Plan de Manejo Ambiental Humedal Ambalemita: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010b). Plan de Manejo Ambiental Humedal Caracolizal: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010c). Plan de Manejo Ambiental Humedal El Burro: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010d). Plan de Manejo Ambiental Humedal El Oval: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010e). Plan de Manejo Ambiental Humedal El Zancudal: *Informe técnico*. CORTOLIMA y GIZ, Ibaqué.

Grupo de Investigación en Zoología (GIZ) (2010f). Plan de Manejo Ambiental Humedal La Garcera: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010g). Plan de Manejo Ambiental Humedal La Herreruna: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010h). Plan de Manejo Ambiental Humedal La Moya de Enrique: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010i). Plan de Manejo Ambiental Humedal La Pedregosa: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010j). Plan de Manejo Ambiental Humedal La Zapuna: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015a). Plan de Manejo Ambiental Humedal Albania: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015b). Plan de Manejo Ambiental Humedal Azuceno: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015c). Plan de Manejo Ambiental Humedal La Huaca: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015d). Plan de Manejo Ambiental Humedal Laguna de Coya: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015e). Plan de Manejo Ambiental Humedal Las Garzas: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015f). Plan de Manejo Ambiental Humedal Rio Viejo: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015g). Plan de Manejo Ambiental Humedal Saldañita: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015h). Plan de Manejo Ambiental Humedal Saman: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016a). Plan de Manejo Ambiental Humedal Caracolí: *Informe técnico*. CORTOLIMA y GIZ, Ibaqué.

Grupo de Investigación en Zoología (GIZ) (2016b). Plan de Manejo Ambiental Humedal Chicualí: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016c). Plan de Manejo Ambiental Humedal Laguna El Silencio: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016d). Plan de Manejo Ambiental Humedal Laguna El Toro: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016e). Plan de Manejo Ambiental Humedal Laguna Gavilán: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016f). Plan de Manejo Ambiental Humedal Toqui-Toqui: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2018). Caracterización Rastrojos (Ambalema): *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2019a). Caracterización Corinto: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2019b). Caracterización El Suizo: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Hilty, S.L. y Brown, W.L. (2001). *Guía de las aves de Colombia*. Edición en español. American bird conservation (ABC): Cali.

Isler, M.L. y Isler P.R. (1987). *The Tanagers: natural history, distribution and identification*. Smithsonian Institution Press: Washington, D.C.

IUCN (2021). The IUCN Red List of Threatened Species. http://www.IUCNredlist.org.

Lilian, E.A. (2014). Las aves acuáticas como indicadoras de problemas ambientales en el embalse La Angostura, Tucumán, Argentina. *Acta zoológica lilloana*, *58*(1): 44-56.

Losada-Prado, S., y Molina, Y. (2011). Avifauna del Bosque Seco Tropical en el departamento del Tolima (Colombia): Análisis de la comunidad. Caldasia, 33(1). Recuperado de https://revistas.unal.edu.co/index.php/cal/article/view/36390/38008.

Manchado, M. y Peña, G. (2000). Estructura numérica de la comunidad de aves del orden Passeriformes en dos bosques con diferentes grados de intervención antrópica en los corregimientos de Salero y San Francisco de Icho. *Tesis de pregrado*, Facultad de Ciencias Básicas: Universidad Tecnológica del Chocó, Chocó.

Marcondes-Machado, L.O. (1988). Experiência de repovoamento com *Sicalis flaveola brasiliensis* (Gmelin, 1789) (Passeriformes, Emberizidae) em área destinada à pecuária leiteira. *Rev. Bras. Zool.*, *5*: 193-200.

McMullan, M., Quevedo, A. y Donegan, T.M. (2010). *Guía de campo de las aves de Colombia*. Fundación ProAves: Bogotá.

Molina-Martínez, Y.G. (2002). Composición y estructura trófica de la comunidad aviaria de la Reserva Natural los Yalcones (San Agustín - Huila) y su posible relación con la vegetación arbórea y arbustiva. *Tesis de pregrado*, Facultad de Ciencias, Universidad del Tolima, Ibagué-Colombia.

Naranjo, L.G., y Espinel, J.D.A. (Eds) (2009). Plan nacional de las especies migratorias: diagnóstico e identificación de acciones para la conservación y el manejo sostenible de las especies migratorias de la biodiversidad en Colombia. Recuperado de

http://www.minambiente.gov.co/images/BosquesBiodiversidadyServiciosEcosistem icos/pdf/Planes-para-la-conservacion-y-uso-de-la-biodiversidad/211010_plan_especies_migratorias.pdf.

Naranjo, L.G., Amaya, J.D., Eusse-González, D. y Cifuentes-Sarmiento, Y. (Eds.) (2012). *Guía de las Especies Migratorias de la Biodiversidad en Colombia*. Aves. Vol.1. Ministerio de Ambiente y Desarrollo Sostenible/ WWF Colombia: Bogotá, D.C.

Niemelä, J. (2000). Biodiversity monitoring for decision-making. *Annales Zoologici Fennici*, 37(4): 307-317.

North American Banding Council (NABC) (2003). *Manual para anillar Passeriformes y cuasi-Passeriformes del anillador de Norteamérica (excluyendo colibríes y búhos).* The North American Banding Council, point Reyes station: California.

Ocampo-Peñuela, N. (2010). El fenómeno de la migración en aves: una mirada desde la Orinoquia. *Orinoquia*, *14*(2): 188-200.

Osorio-Huamaní, B.C. (2014). Inventario de la biodiversidad de aves como indicador de la calidad ambiental del "Humedal Laguna el Oconal" del Distrito de Villa Rica. Universidad Nacional Agraria de la Selva. Tingo María.

Pacheco-Vargas, G.F., Sánchez-Guzmán, J.N. y Losada-Prado, S. (2018). Caracterización de la comunidad de aves asociada a los humedales de zonas bajas del departamento del Tolima, Colombia. *Biota*, *19*(1): 190-201.

Parra, J.L. (2014) Uso de la biota acuática en la identificación, caracterización y establecimiento de límites en humedales interiores: Aves. En: Lasso C.A., Gutiérrez F. de P. y Morales-B D. (Eds.). X. Humedales interiores de Colombia: identificación, caracterización y establecimiento de límites según criterios biológicos y ecológicos (pp. 150-155). Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH): Bogotá, D.C.

Peterson, R.T. y Chalif, E.L. (1989). *Aves de México*. Guía de Campo. Editorial Diana: México.

Quesnelle, P.E., Fahrig, L. y Lindsay, K.E. (2013). Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. *Biological Conservation*, *160*: 200-208.

Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E. y De Sante, D.F. (1993). *Handbook of field methods for monitoring landbirds. General technical report*. Forest Service, United States Department of agriculture: Albany.

Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., De Sante, D.F. y Milá, B. (1996). *Manual de métodos de campo para el monitoreo de aves terrestres. General technical report*. Pacific Southwest Research Station, Forest service, United States Department of agriculture: Albany.

Ralph, C.J., Widdowson, M., Widdowson, B., O'donnell, B. y Frey, R.I. (2008). *Tortuguero bird monitoring station protocol for the Tortuguero integrated bird monitoring program.* U.S. Forest Service, Redwood Sciences Laboratory: Arcata.

Ramírez, A. (2000). Utilidad de las aves como indicadores de la riqueza específica regional de otros taxones. *Ardeola*, *47*(2): 221-226.

Remsen, J.V., Areta, J.I., Cadena, C.D., Jaramillo, A., Nores, M., Pacheco, J.F., Pérez-Emán, J., Robbins, M.B., Stiles, F.G., Stotz, D.F. y Zimmer, K.J. A classification of the bird species of South America. American Ornithologists' Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html.

Renjifo, L.M., Franco-Maya, A.M., Amaya-Espinel, J.D., Kattan, G.H. y López-Lanús, B. (Eds) (2002). *Libro rojo de aves de Colombia*. Bogotá, Colombia: Serie Libros Rojos de Especies Amenazadas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio del Medio Ambiente: Bogotá D.C.

Renjifo, L.M., Gómez, M.F., Velásquez-Tibatá, J., Amaya-Villarreal, A.M., Kattan, G.H., Amaya-Espinel, J.D. y Burbano-Girón, J. (2014). *Libro rojo de las aves de*

Colombia Volumen 1: bosques húmedos de los Andes y la costa Pacífica. Pontificia Universidad Javeriana e Instituto von Humboldt (Eds): Bogotá D.C.

Restall, R., Rodner, C. y Lentino, M. (2006). *Birds of Northern South America: an identification guide, Vol.2. Plates and maps.* Yale University Press, New Haven and London: Londres.

Ricklefs, R.E. (2012). Naturalists, Natural History, and the Nature of Biological Diversity. *The American Naturalist*, *179*(4): 423-435.

Roda, J., Franco, A.M., Baptiste, M.P., Mónera, C. y Gómez, D.M. (2003). *Manual de identificación CITES de aves de Colombia*. Serie Manuales de Identificación CITES de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá D.C.

Rosselli, L. y Stiles, F.G. (2012). Local and landscape environmental factors are important for the conservation of endangered wetland birds in a high *Andean plateau*. *Waterbirds*, *35*: 453-469.

SiB Colombia (2021). Sistema de información sobre biodiversidad de Colombia. Disponible en: http://www.sibcolombia.net.

Stiles, F.G. y Bohórquez C.I. (2000). Evaluando el estado de la biodiversidad: el caso de la avifauna de la Serrania de las Quinchas, Boyacá, Colombia. *Caldasia*, 22(1): 61-92.

Stouffer, P.C. y Bierregaard, R.O.Jr. (1995). Effects of forest fragmentation on understory hummingbirds in Amazonian Brazil. *Conservation Biology*, *9*(5), 1085-1094.

Traylor, M.A. (1977). A classification of the Tyrant Flycatchers (Tyrannidae). *Bulletin of the Museum of Comparative Zoology*, *148*: 129-184.

Verhelst-Montenegro, J.C. y Salaman, P. (2015) Checklist of the Birds of Colombia/ Lista de las Aves de Colombia. Electronic list, version '18 May 2015'. Atlas of the Birds of Colombia. Available from https://sites.google.com/site/haariehbamidbar/atlas-of-the-birds-of-colombia.

Villareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M. y Umaña A.M. (2004). *Manual de métodos para el desarrollo de inventarios de biodiversidad*. Programa de Inventarios de Biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá.

Villegas, M. y Garitano, A. (2008). Las comunidades de aves como indicadores ecológicos para programas de monitoreo ambiental en la ciudad de La Paz, Bolivia. *Ecología en Bolivia, 43*(2): 146-153.

Wunderle, J.M.Jr. (1994). *Census methods for Caribbean land birds*. Southern forest experiment Station, Forest service, United States Department of agriculture: New Orleans.

Acevedo, A.A., Lampo, M. y Cipriani, R. (2016). The cane or marine toad, Rhinella marina (Anura, Bufonidae): two genetically and morphologically distinct species. *Zootaxa*, *4103*(6), 574–586.

Acosta-Galvis, A.R. (2000). Ranas, Salamandras y Caecilias (Tetrapoda: Amphibia) de Colombia. *Biota Colombiana*, 289-319.

Acosta-Galvis, A.R. (2021). Lista de los Anfibios de Colombia: Referencia en línea V.11.2021 (26/06/2021). Página web accesible en http://www.batrachia.com; Batrachia, Villa de Leyva, Boyacá, Colombia.

Angulo, A. (2002). Anfibios y paradojas: Perspectivas sobre la diversidad y las poblaciones de anfibios. *Ecología Aplicada*, 1(1): 105-109.

Angulo, A., Rueda-Almonacid, J.V., Rodríguez-Mahecha, J.V. y La Marca, E. (2006). *Técnicas de inventario y monitoreo para los anfibios de la región tropical andina*. Serie Manuales de Campo Nº 2. Conservación Internacional, Panamericana Formas e Impresos S.A.: Bogotá D.C.

Bauer, A.M. (1998). Cogger, H.G.; Zweifel, R.G. (Eds.). Encyclopedia of Reptiles and Amphibians. San Diego: Academic Press. pp. 170–171. ISBN 978-0-12-178560-4.

Bauer, A.M. y Russell, A.P. (2002). *Thecadactylus rapicauda. Catalogue of American Amphibians and Reptiles*, 753, 1-6.

Bernal, M.H., Páez, C.A. y Vejarano, M.A. (2005). Composición y distribución de los anfibios de la cuenca del río Coello (Tolima), Colombia. *Colombia Actualidades Biológicas*, 82(27): 87-92.

Bernal, H.M. y Lynch, J.D. (2013). Thermal tolerance in anuran embryos with different reproductive modes: relationship with altitude. *The Scientific World Journal*.

Bionda, C., Gari, N., Luque, E., Salas, N., Lajmanovich, R. y Martino, A. (2012). Ecología trófica en larvas de *Rhinella Arenarum* (Anura: Bufonidae) en agroecosistemas y sus posibles implicaciones para la conservación. *Revista de biología tropical*, 60(2): 771-779.

Blaustein, A.R., Wake, D.B. y Sousa, W.P. (1994). Amphibian Declines: Judging stability, persistence, and susceptibility of populations to local and global extinctions. *Conservation Biology*, *8*(1): 60-71.

Böhm, M., Collen, B., Baillie, J.E.M., Bowles, P., Chanson, J., Cox, N., Hammerson, G., Hoffmann, M... (2013). The conservation status of the world's reptiles. *Biological conservation*, 157: 372-385.

Castaño-Mora, O.V. (Ed.) (2002). Libro rojo de reptiles de Colombia. Libros rojos de especies amenazadas de Colombia. Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del medio Ambiente, Conservación Internacional: Bogotá D.C.

Castro-Herrera, F. y Vargas-Salinas, F. (2008). Anfibios y reptiles en el departamento del Valle del Cauca, Colombia. *Biota Colombiana*, *9*(2).

Chaves, G., Köhler, G., Lamar, W., Porras, L. W., Sunyer, J., Rivas, G., Gutiérrez-Cárdenas, P. y Caicedo, J. (2017). *Gonatodes albogularis*: La Lista Roja de Especies Amenazadas. UICN. http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T197487A2489345.en

Cochran, D.M. y Going, C.J. (1970). *Frogs of Colombia*. Smithsonian Institution Press, USA. 655 pp.

Crump, M.L. (2003). Conservation of amphibians in the New World tropics. En: Semlitsch, R.D. (Ed) *Amphibian Conservation* (pp. 53-69). Smithsonian Institution. USA.

Di Tada, I.E., Zabattieri, M.V., Bridarolli, M.E., Salas, N.E. y Martino, A.L. (1996). Anfibios anuros de la provincia de Córdoba. En: Di Tada, I.E. y E.H. Bucher (Eds). *Biodiversidad de la provincia de Córdoba* (pp. 191-215). Universidad Nacional de Río Cuarto: Río Cuarto.

Donoso-Barros, R. (1960). La familia Teiidae en Chile. *Revista Chilena de Historia Natural*, *55*, 41-54.

Driscoll, D.A. (2004). Extinction and outbreaks accompany fragmentation of a reptile community. *Ecological Applications*, *14*(1): 220-240

Duellman, W.E. y Trueb, L. (1994). *Biology of Amphibians*. The John Hopkins University Press Ltd.London.670 pp.

Eliozondo, L. (2011). *Leptodactylus insularum*. Costa Rica: CRBio. http://www.crbio.cr:8080/neoportal-web/species/Leptodactylus%20insularum.

Figueras, J., González, L. A., Arcas, A., Velásquez, J. y Hernán, F. 2015. Hábitos alimentarios del lagarto *Cnemidophorus lemniscatus* (linnaeus, 1758) (Sauria: Teiidae) en dos zonas xerofíticas del estado Sucre, Venezuela. *Acta Biológica Venezuela*.

Galvis-Rizo, C., Carvajal-Cogollo, J.E., Arredondo, J.C., Passos, P., López-Victoria, M., Velasco, J.A... y Rojas-Rivera, M.A. (2015). *Libro Rojo de Reptiles de Colombia*.

Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio del Medio Ambiente: Bogotá D.C.

Gorka, B. (2010). Estudio de la comunidad de anfibios y reptiles en la cuenca de bolintxu: propuesta para el conocimiento de la diversidad de herpetofauna, detección de especies de interés y propuestas de gestión. Obtenido de http://www.bilbao.eus/Agenda21/documentos/estudio_comunidad_anfibios_reptiles.pdf.

Gibbons, J. W., Scott, D.E., Ryan, T.J., Buhlmann, K.A., Tuberville, T.D... (2000). The global decline of reptiles, déjà vu amphibians. *BioScience*, *50*: 653-666.

Grupo de Investigación en Zoología (GIZ) (2010a). Plan de Manejo Ambiental Humedal Ambalemita: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010b). Plan de Manejo Ambiental Humedal Caracolizal: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010c). Plan de Manejo Ambiental Humedal El Burro: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010d). Plan de Manejo Ambiental Humedal El Oval: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010e). Plan de Manejo Ambiental Humedal El Zancudal: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010f). Plan de Manejo Ambiental Humedal La Garcera: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010g). Plan de Manejo Ambiental Humedal La Herreruna: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010h). Plan de Manejo Ambiental Humedal La Moya de Enrique: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010i). Plan de Manejo Ambiental Humedal La Pedregosa: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2010j). Plan de Manejo Ambiental Humedal La Zapuna: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015a). Plan de Manejo Ambiental Humedal Albania: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015b). Plan de Manejo Ambiental Humedal Azuceno: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015c). Plan de Manejo Ambiental Humedal La Huaca: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015d). Plan de Manejo Ambiental Humedal Laguna de Coya: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015e). Plan de Manejo Ambiental Humedal Las Garzas: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015f). Plan de Manejo Ambiental Humedal Rio Viejo: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015g). Plan de Manejo Ambiental Humedal Saldañita: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2015h). Plan de Manejo Ambiental Humedal Saman: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016a). Plan de Manejo Ambiental Humedal Caracolí: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016b). Plan de Manejo Ambiental Humedal Chicualí: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016c). Plan de Manejo Ambiental Humedal Laguna El Silencio: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016d). Plan de Manejo Ambiental Humedal Laguna El Toro: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016e). Plan de Manejo Ambiental Humedal Laguna Gavilán: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2016f). Plan de Manejo Ambiental Humedal Toqui-Toqui: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2018). Caracterización Rastrojos (Ambalema): *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2019a). Caracterización Corinto: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Grupo de Investigación en Zoología (GIZ) (2019b). Caracterización El Suizo: *Informe técnico*. CORTOLIMA y GIZ, Ibagué.

Hernández-Córdoba, O.D., Castro-Herrera, F. y Páez-Melo, M. (2013). Bioacumulación de mercurio en larvas de anuros en la zona afectada por la minería de oro en el río Dagua, Buenaventura, Valle Del Cauca, Colombia. *Acta Biológica Colombiana*, 18(2): 341-348.

Heyer, W.R. (1978). Systematics of the fuscus group of frogs genus Leptodactylus (Amphibia: Leptodactylidae). *Natural History Museum of Los Angeles County Science Bulletin*, 29: 1-84.

Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C. y Foster, M.S. (1994). *Measuring and Monitoring Biological Diversity*. Standard Methods for Amphibians. S.I. Press: Washington D.C.

Heyer, W.R. (2005). *Leptodactylus fragilis* Brocchi, 1877. White-lipped frog. Amphibian Declines. *The Conservation Status of United States Species*.

Heyer W.R. y De Sá, R. (2011). Variation, Systematics, and Relationships of the *Leptodactylus bolivianus* Complex (Amphibia: Anura: Leptodactylidae). *Smithsonian Contributions to Zoology* (635): 1-58.

Hurme, K.J. (2014). "Reproductive and spatial ecology of *Leptodactylus insularum* (Anura, Leptodactilidae) in Panama." *Journal of Herpetology*, *48*(4), 1-11.

IUCN (2021). The IUCN Red List of Threatened Species. http://www.iucnredlist.org.

Lips K.R. (1998). Decline of a Tropical Montane Amphibian fauna. *Conservation Biology*, *12*(1): 106-117.

Llano-Mejía, J., Cortés-Gómez, A.M. y Castro-Herrera, F. (2010). Lista de anfibios y reptiles del departamento del Tolima, Colombia. *Biota Colombiana*, *11*(1y 2): 89-106.

Lynch, J.D. y Suárez-Mayorga, A.M. (2002). Análisis biogeográfico de los anfibios paramunos. *Caldasia*, *24*(2): 471-480.

Marsh, D.M. y Pearman, P.B. (1997). Effects of habitat fragmentation on the abundance of two species of Leptodactylid frogs in an Andean montane forest. *Conservation Biology*, *11*(6): 1323-328.

McDiarmid, R.W. (1994). Preparing amphibians as scientific specimens. En W.R. Heyer, M.A. Donnelly, R.W. McDiarmid, L.A.C. Hayek, and M.S. Foster (Eds). *Measuring and Monitoring Biological Diversity, Standard Methods for Amphibians* (pp.103-107). Smithsonian Institution Press: Washington D.C.

Mendelson, J.R., Lips, K.R., Gagliardo, R.W., Rabb, G.B., Collins, J.P... (2006). Confronting amphibian declines and extinctions. *Science*, *313*: 48.

Méndez-Narváez, J. (2014). Diversidad de anfibios y reptiles en hábitats altoandinos y paramunos de la cuenca del río Fúquene, Cundinamarca, Colombia. Obtenido de http://www.redalyc.org/pdf/491/49140738006.pdf.

Mojica, B.H. y Serrano, V.H. (2003). Annual Reproduction Activity of Population of *Cnemidophorus lemniscatus* (Squamata: Teiidae). *Journal of Herpetology*, 1, 35-42.

Montgomery, C.E., Boback, S.M., Green, S., y Paulissen, M. (2011). *Cnemidophorus lemniscatus* (squamata: Teiidae) on Cayo cochino pequeño, Honduras: Extent of island occupancy, natural history, and conservation status. Herpetological Conservation and Biology.

Nuñes-Henrriques, I. (2014). Historia natural de Cnemidophorus do Grupos Ocellifer (Squamata: Teiidae) em uma área de Caatinga na microrregiao de Patos, Paraiba. Universidad federal de Campina Grande

Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L... (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. *Nature*, *439*: 161-167.

Quiroga, R. (2007). *Indicadores ambientales y de desarrollo sostenible: avances y perspectivas para América Latina y el Caribe*. Series manuales. Naciones Unidas, CEPAL: Santiago de Chile.

Rivero-Blanco, C. (1979). El género de lagarto neotropical *Gonatodes fitzinger* (Sauria: Sphaerodactylinae) (Tesis de Doctorado). Texas AyM University, Texas, U.S.A.

Roda, J., Franco, A.M., Baptiste, M.P., Mónera, C. y Gómez, D.M. (2003). *Manual de identificación CITES de aves de Colombia*. Serie Manuales de Identificación CITES de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio de Ambiente, Vivienda y Desarrollo Territorial: Bogotá D.C.

Rodríguez, J.M., Camargo, J.C., Niño, J., Pineda, A.M., Arias, L.M., Echeverry, M.A. y Miranda, C.L. (2009). *Valoración de la biodiversidad en la ecorregión del eje cafetero*. CIEBREG: Pereira.

Román-Palacios, C., Fernández-Garzón, S., Valencia-Zuleta, A., Jaramillo-Martínez, A.F. y Viáfara-Vega, R.A. (2017). Lista anotada de la herpetofauna del departamento del Quindío, Colombia. *Biota Colombiana*, *18*(1): 251-281.

Rueda-Almonacid, J.V., Lynch, J.D., y Amézquita, A. (Eds). (2004). Libro rojo de anfibios de Colombia. Serie de libros rojos de especies amenazadas de Colombia. Conservación Internacional Colombia, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Ministerio de Medio Ambiente: Bogotá D.C.

Ruiz-Carranza, P.M., Ardila-Robayo, M.C. y Lynch, J.D. (1996). Lista actualizada de la fauna de Amphibia de Colombia. Revista de la *Academia Colombiana de Ciencias Exactas*, *Físicas y Naturales*, *20* (77): 365-415.

Sanabria, E., Quiroga, L. y Acosta, J.C. (2007). Hábitos alimentarios de infantiles de *Pleurodema nebulosum* (Anura: Leptodactylidae), en Matagusanos, San Juan, Argentina. *Revista Peruana de Biología*, *14*(2): 295-296.

Savage, J.M. (2002). The amphibians and reptiles of Costa Rica: A herpetofauna between two continents, between two seas. University of Chicago Press, Chicago, USA, 934 pp.

Santos-Barrera, G., Solís, F., Ibáñez, R., Wilson, L.D., Savage, J., Lee, J., Chaves, G., Señaris, C., Acosta-Galvis, A. y Hardy, J. (2010). *Engystomops pustulosus*. 2006 IUCN Red List of Threatened Species.

Savage, J.M. (2002). The amphibians and reptiles of Costa Rica: A herpetofauna between two continents, between two seas. University of Chicago Press, Chicago, USA, 934 pp.

SiB (2021). Sistema de información sobre biodiversidad de Colombia. Disponible en: http://www.sibcolombia.net.

Solís, F., Ibáñez, R., Chaves, G., Savage, J., Jaramillo, C., Fuenmayor, Q., Reynolds, R., Caramaschi, U, Mijares, A., Acosta-Galvis, A., Hardy, J., La Marca, E., Manzanilla, J. y Bolaños, F. (2008). *Leptodactylus bolivianus*, La Lista Roja de Especies Amenazadas. UICN. e.T57114A11582479.http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T57114A11582479.en

Soto, G. (2009). Contribución al conocimiento del paisaje de cacaotales, como hábitat para el mantenimiento de la diversidad de herpetofauna en Talamanca, Costa Rica. Turrialba.

Stebbins, R.C. y Hendrickson, J.R. (1959). Field studies of amphibians in Colombia, South America. *University of California Publications in Zoology*, *56*(5): 497-540.

Suárez González, L.F. (2017). Reptiles y anfibios como bioindicadores para implementar en estudios de impacto ambiental y planes de manejo ambiental. *Tesis de especialización*. Universidad Militar Nueva Granada, Bogotá D.C.

Theisinger, O. y Ratianarivo, M.C. (2015). Patterns of reptile diversity loss in response to degradation in the spiny forest of southern Madagascar. *Herpetological Conservation and Biology*, 10(1): 273-283.

Uetz, P., Freed, P., Aguilar, R. y Hošek, J. (Eds) (2021). The Reptile Database, http://www.reptile-database.org.

Urbina-Cardona, J.N. y Castro, F. (2009). Distribución actual y futura de anfibios y reptiles con potencial invasor en Colombia: Una aproximación usando modelos de nicho ecológico. En: Varela-Ramírez, A. (Ed.) *Biodiversidad y Cambio Climático* (pp.

65-71). Ideam-Proyecto inap componente alta montaña. Pontificia Universidad Javeriana: Bogotá.

Urbina-Cardona, J.N., Bernal, E.A., Giraldo-Echeverry, N. y Echeverry-Alcnedra, A. (2015). El monitoreo de herpetofauna en los procesos de restauración ecológica: indicadores y métodos. En: Aguilar-Garavito, M. y W. Ramírez (Eds.). Monitoreo a procesos de restauración ecológica, aplicado a ecosistemas terrestres. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D.C., Colombia

Valencia-Aguilar, A., Cortés-Gómez, A.M. y Ruiz-Agudelo, C.A. (2013). Ecosystem services provided by amphibians and reptiles in neotropical ecosystems. *International Journal of Biodiversity Science, Ecosystem Services and Management*, 9(3): 257-272.

Valencia, J., y Garzón, K. (2011). *Guía de Anfibios y Reptiles en ambientes cercanos a las estaciones del OCP*. Fundación Herpetológica Gustavo Orcés, 268 pp.

Valencia-Zuleta, A., Jaramillo-Martinez, A.F., Echeverry-Bocanegra, A., Viáfara-Vega, R., Hernández-Córdoba, O., Cardona-Botero, V.E., Gutiérrez-Zúñiga, J. y Castro-Herrera, F. (2014). Conservation Status of the herpetofauna, protected areas, and current problems in Valle del Cauca, *Colombia. Amphibian y Reptile Conservation*, 8(2) [Special Section]: 1-18.

Vargas, F. y Castro, F. (1999). Distribución y preferencias de microhábitat en anuros (Amphibia) en bosque maduro y áreas perturbadas en Anchicayá, Pacífico colombiano. *Caldasia*, *21*(1): 95-109.

Young, B.E., Stuart, N., Chanson, J.S., Cox, N.A. y Boucher, T.M. (2004). *Joyas que están desapareciendo: El Estado de los Anfibios en el Nuevo Mundo*. Nature Serve: Arlington.

Ajiaco-Martínez, R. E., Ramírez-Gil, H., Sánchez-Duarte, P., Lasso, C. A. y Trujillo, F. (2012). IV. Diagnóstico de la pesca ornamental en Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, D. C., Colombia, 152 pp.

Albornoz-Garzón, J. G. y Conde-Saldaña, C. C. (2014). Diversidad y Relaciones Ecomorfológicas de la Comunidad Íctica de la Cuenca del Rio Alvarado, Tolima, Colombia. Trabajo de grado, Universidad del Tolima, Facultad de Ciencias, Programa De Biología. Ibagué – Tolima.

Anderson, E. P., y Maldonado-Ocampo J. A. (2010). A regional perspective on the diversity and conservation of tropical Andean fishes. *Conservation Biology*. 10: 1523-1739.

Briñez-Vásquez, G. N., Villa-Navarro, F. A., Ortega-Lara, A., Reinoso-Flórez, G. y García-Melo, J. E. (2005). Distribución altitudinal y diversidad de la familia Astroblepidae (Pisces, Siluriformes), en la cuenca del río Coello, Tolima. *Dahlia*. 8: 39-46.

Castro-Roa, D. (2006). Composición y estructura de la comunidad de Characiformes en la cuenca del río Prado (Tolima-Colombia). *Trabajo de grado Programa de Biología*. Facultad de Ciencias Básicas. Universidad del Tolima. Ibagué.

DoNascimiento, C., Herrera Collazos E. E. y Maldonado-Ocampo, J. A. (2018): Lista de especies de peces de agua dulce de Colombia / Checklist of the freshwater fishes of Colombia. v2.10. Asociación Colombiana de Ictiólgos. Dataset/Checklist. http://doi.org/10.15472/numrso

García-Alzate, C. A., Taphorn, D. C., Román-Valencia, C. R. y Villa-Navarro, F. A. (2015). *Hyphessobrycon natagaima* (characiformes: characidae) a new species from Colombia, with a key to the Magdalena basin *Hyphessobrycon* species. Caldasia 37 (1): 221-232. doi: http://dx.doi.org/10.15446/caldasia/v37n1.51228

García-Melo, L. (2005). Distribución, Diversidad y Ecología Básica de la familia Trichomycteridae (Ostariophysy: Siluriformes) en la cuenca del río Coello departamento del Tolima. *Tesis de Pregrado*. Programa de Biología., Facultad de Ciencias Básicas, Universidad del Tolima. Ibagué.

Lasso, C.A., Agudelo Córdoba, E., Jiménez-Segura, L. F., Ramírez-Gil, H., Morales-Betancourt, M., Ajiaco-Martínez, R. E., Gutiérrez, F. D., Usma-Oviedo, J. S., Muñoz-Torres, S. E. y Sanabria-Ochoa, A. I. (Editores). (2011). I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogota, D. C., Colombia, 715 pp.

López-Delgado, E. (2013). Composición y estructura de la comunidad de peces y sus relaciones con la calidad de la vegetación riparia y algunas variables ambientales en dos ríos de bosque seco tropical (Bs-T), Tolima (Colombia). *Tesis de Maestría*. Programa de Biología, Facultad de Ciencias Básicas, Universidad del Tolima. Ibagué.

Maldonado-Ocampo, J. A., Ortega-Lara, A., Usma, J. S., Galvis, G., Villa-Navarro, F., Vásquez, L., Prada-Pedreros, S... (2005). Peces de los Andes de Colombia (1st ed. p. 346). Bogotá D.C: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Mojica, J., Usma, J. S., Álvarez-Leon, R. y Lasso, C. (2012). Libro Rojo de Peces Dulceacuicolas de Colombia (2012) (p. 153). Bogotá D.C: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Montoya-Ospina, D. C., López-Delgado, E. O. y Villa-Navarro, F. A. (2018). Composición y estructura de peces de la microcuenca del río Anchique, Tolima, Colombia. Revista Biología Tropical, 66(1).

Villa-Navarro, F. A. y Losada-Prado, S. (1999). "Aspectos tróficos de *Petenia umbrifera* (Pisces:Cichlidae) en la represa de Prado (Tolima)". En: Colombia. *Revista De La Asociación Colombiana De Ciencias Biológicas ISSN:* 0120-4173 ed: Asociación Colombiana De Ciencias Biológicas v.11 fasc.1 p.24-35.

Villa-Navarro, F. A. y Losada-Prado, S. (2004). "Aspectos bioecológicos del Caloche, *Sternopygus macrurus* (Gymnotiformes: Sternopygidae), en la Represa de Prado, Tolima, Colombia". En: Colombia. *Dahlia ISSN:* 0122-9982 *ed:* Unibiblos Universidad Nacional De Colombia *v. fasc.*7 p.49 – 56.

Zapata, L. A. y Usma (Editores). (2013). Guía de las especies Migratorias de la Biodiversidad en Colombia. Peces. Vol. 2. Ministerio de Ambiente y Desarrollo Sostenible / WWF-Colombia. Bogotá, D.C. Colombia. P. 486.

Zuñiga-Upegüi, P., Villa-Navarro, F. A., Ortega-Lara, A., Reinoso-Flórez, G. (2005). "Relación longitud-peso y frecuencias de tallas para los peces del género Chaetostoma (Siluriformes, Loricariidae) de la cuenca del río Coello, Colombia". En: Colombia Dahlia *ISSN:* 0122-9982 *ed:* Unibiblos Universidad Nacional De Colombia *v. fasc.*8 p.47 – 52

Andrade, G. (1990). Clave para familias y subfamilias de Lepidoptera: Rhopalocera de Colombia. *Caldasia*, *16*(77), 197-200.

Andrade, G. (2002). Biodiversidad de las mariposas (Lepidóptera: Rhopalocera) de Colombia. *Boletín de la Sociedad Entomológica Aragonesa*, 2, 153-172.

Andrade, G. (2011). Estado del conocimiento de la biodiversidad en Colombia y sus Amenazas. Consideraciones para fortalecer la interacción ciencia- política. *Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35*(137), 491-507.

Andrade, G., Henao, E. y Triviño, P. (2013). Técnicas y procesamiento para la recolección, preservación y montaje de las mariposas en estudios de biodiversidad y conservación. (Lepidoptera: Hesperoidea-Papilionoidea). *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales,37*(144), 311-325.

Boom, C., Seña, L., Vargas, M. y Martínez, N. (2013). Mariposas Hesperioidea y Papilionoidea (Insecta: Lepidoptera) en un fragmento de bosque seco tropical, Atlántico, Colombia. *Boletín Científico. Centro de Museos. Museo de Historia Natural*, 17(1), 149-167.

Brown, K. S., & Freitas, A. V. L. (2002). Butterfly communities of urban forest fragments in Campinas, São Paulo, Brazil: structure, instability, environmental correlates, and conservation. *Journal of Insect Conservation*, *6*(4), 217-231.

Brusca, R. y Brusca, G. (2005). *Invertebrados* (2° Edición). McGRAW -Hill INTERAMERICANA.

Campos, L. R., Gómez, J. y Andrade, G. (2011). Mariposas (Lepidoptera: Hesperioidea-Papilionoidea) de las áreas circundantes a las Ciénagas del Departamento de Córdoba, Colombia. *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35*(134), 45-60.

Cock, M. J. (1997). The skipper butterflies (Hesperiidae) of Trinidad. Part 9, Genera group E concluded (third section) with a description of a new species of Clito. *Living World, Journal of the Trinidad and Tobago Field Naturalists' Club*, 1998, 33-45.

D'Abrera, B. (1982). Butterflies of the neotropical region. Part I. Papilionidae and Pieridae. Hill House Publishers.

D'Abrera, B. (1984). Butterflies of the neotropical region. Part II. Danaidae, Ithomiidae, Heliconidae & Morphidae. Hill House Publishers.

D'Abrera, B. (1987a). Butterflies of the neotropical region. Part III. Brassolidae, Acraeidae, Nymphalidae (partim). Hill House Publishers.

D'Abrera, B. (1987b). Butterflies of the neotropical region. Part IV. Nymphalidae (partim). Hill House Publishers.

D'Abrera, B. (1989). Butterflies of the neotropical region. Part V. Nymphalidae (Conc.) and Satyridae. Hill House Publishers.

D'Abrera, B. (1994). *Butterflies of the neotropical region. Part VI. Riodinidae*. Hill House Publishers.

D'Abrera, B. (1995). Butterflies of the neotropical region. Part VII. Lycaenidae. Hill House Publishers.

De Vries, P. J. (1987). Butterflies of Costa Rica and their Natural History: Papilionidae, Pieridae, Nymphalidae. Princeton University Press.

Dessuy, M. B. y de Morais, A. B. (2007). Diversidade de borboletas (Lepidoptera, Papilionoidea e Hesperioidea) em fragmentos de Floresta Estacional Decidual em Santa Maria, Rio Grande do Sul, Brasil. *Revista Brasileira de Zoologia*, *24*, 108-120.

Díaz, J. y Santos, T. (1998). Zoología, aproximación evolutiva a la diversidad y organización de los animales. Editorial Síntesis S. A.

Ehrlich, P. R. y Ehrlich, A. H. (1961). *How to Know the Butterflies*. Brown Company Publishers.

Flórez, E., Romero, C. y López, D. (2015). Los artrópodos de la reserva natural río Ñambí. Serie de Guías de Campo del Instituto de Ciencias Naturales N° 15. Universidad Nacional de Colombia.

Fox, M. y Real, H. G. (1971). A *Monograph of the Ithomiidae (Lepidoptera). Part IV. The tribe Napeogenini Fox.* Memoirs of the American Entomological Institute.

Freitas, A. V. y Brown, K. S. (2004). Phylogeny of the Nymphalidae (Lepidoptera). *Systematic biology*, *53*(3), 363-383.

Gallego, A. P. y Gallego, M. C. (2019). Efecto de la matriz ganadera sobre mariposas diurnas (Lepidoptera: Rhopalocera) en fragmentos de bosque seco, Patía (Cauca, Colombia). *Revista Colombiana de Entomología*, *45*(2), 1-10.

García, C., Constantino, L. M., Dolores, M. y Kattan, G. (2002). *Mariposas comunes de la cordillera Central de Colombia*. Widlife Conservation Society.

Garwood, K., Huertas, B., Ríos, I.C., y Jaramillo, J.G. (2021). *Mariposas de Colombia lista de chequeo*. BioButterfly Database.

Ghazanfar, M., Faheem, M., Hussain, R. y Younas, M. (2016). Butterflies and their contribution in ecosystem: A review. *Journal of Entonology and Zoology Studies,* 4(2), 115-118.

González, N. A., Pozo, C., Ochoa, S., Ferguson, B. G., Cambranis, E., Lara, O., Pérez, I., Ponce, A. y Kampichler, C. (2016). Nymphalidae frugívoras (Lepidoptera: Papilionoidea) asociadas a un ecomosaico agropecuario y de bosque tropical lluvioso en un paisaje del sureste de México. *Revista mexicana de biodiversidad, 87*(2), 451-464.

Hogsden, K. L. y Hutchinson, T. C. (2004). Butterfly assemblages along a human disturbance gradient in Ontario, Canada. *Canadian Journal of Zoology*, 82(5), 739-748.

Hoskins, A (2018). Learn About Butterflies: the complete guide to the world of butterflies and moths. New Holland Publishers. Consultado el 12 de agosto del 2021. https://n9.cl/7g8u6.

Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F. y Sanjayan, M. A. (1993). Terrestrial Arthropod Assemblages: Their Use in Corsevation Planning. *Conservation Biology, 7*(4), 796-808.

Kristensen, N., Scoble, M. y Karsholt, O. (2007). Lepidoptera phylogeny and systematic: the state of inventorying moth and butterfly diversity. *Zootaxa*, *1668*, 699-747.

Le Crom, J. F., Constantino, L. M., Salazar, J. A. y Llorente, J. (2004). *Mariposas de Colombia, Tomo 2. Pieridae*. Carlec Ltda

Le Crom, J. F., Constantino, L. M.y Salazar, J. A. (2002). *Mariposas de Colombia. Tomo 1. Papilionidae*. Carlec Ltda.

Llorente, J., Vargas, I., Martínez, A., Trujano, M., Hernández, B. y Warren, A. (2014). Biodiversidad de Lepidoptera en México. *Revista Mexicana de Biodiversidad, 85,* 363-371.

Madruga, J., Kabke, S., Ely, E. J. y Mello, F. R. (2013). Borboletas frugívoras (Lepidoptera: Nymphalidae) no Horto Botânico Irmão Teodoro Luis, Capão do Leão, Rio Grande do Sul, Brasil. *Biotemas*, *26*(1), 87-95.

Mahecha, O., Dumar, J. y Pyrcz, T. (2011). Efecto de la fragmentación del hábitat sobre las comunidades de Lepidóptera de la tribu Pronophilini a lo largo de un gradiente altitudinal en un bosque andino en Bogotá (Colombia) (Lepidoptera: Nymphalidae, Satyrinae). SHILAP Revista de Lepidopterología, 39(153), 117-126.

Mercado, Y., Mercado, J. y Giraldo, C. E. (2018). Mariposas en un fragmento de bosque seco tropical en Montes de María (Colombia). *Ciencia en Desarrollo*, 9(2), 35-45.

Montero, F. A. y Ortiz, M. P. (2013). Ciclo de vida y ecología de Panyapedaliodes drymaea, Hewitson 1858 (Nymphalidae: Satyrinae Pronophilina) en Cundinamarca (Colombia). *Boletín Científico Centro De Museos De Historia Natural, 18*(2), 284-297.

Murillo, S., Fadul, C. y Valdeleón, J. (2018). Inventario de mariposas diurnas en la cuenca de la quebrada Santo Tomás, Pensilvania-Colombia. *Revista del Sistema de Ciencia, Tecnología e Innovación, 3*(1), 57-76.

Neild, F. E. (1996). The butterflies of Venezuela, Part 1: Nymphalidae I (Limenitidinae, Apaturinae, Charaxinae). Meridian Publications.

Oostermeijer, J. G. B. y van Swaay, C. (1998). The relationship between butterfies and environmental indicator values: a tool for conservation in a changing landscape. *Biological conservation*, *86*, 271-280.

Orozco, S., Muriel, S. B. y Palacio, J. (2009). Diversidad de lepidópteros diurnos en un área de bosque seco tropical del occidente antioqueño. *Actualidades Biológicas*, 31(90), 31-41.

Ospina, L. (2014). Estructura de la comunidad de mariposas diurnas (Lepidoptera: Hesperioidea y Papilionoidea) en distintos tipos de hábitats en la cuenca del Río Lagunillas (Tolima - Colombia) [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio de la Universidad Nacional de Colombia.

Padilla, F. y Cuesta, A. (2003). Zoología aplicada. Ediciones Díaz de Santos, S.A.

- Palacios, V. D., Palacios, L. y Jiménez, A. M. (2018). Diversidad de mariposas diurnas (Lepidoptera: Papilionoidea) asociadas con tres hábitats en el corregimiento de Pacurita, municipio de Quibdó, Chocó, Colombia. *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42*(164), 237-245.
- Peña, C. y Wahlberg, N. (2008). Prehistorical climate change increased diversification of a group of butterflies. *Biology Letters*, *4*(3), 274-278.
- Peña, J. M. (2008). Lepidópteros diurnos. En: G. Reinoso, F. A. Villa, H. E. Esquivel, J. E. García Melo y M.A. Vejarano (eds.), *Biodiversidad Faunística y Florística de la Cuenca del río Lagunillas Biodiversidad Regional Fase IV.* (pp. 235-356). Grupo de Investigación en Zoología, Universidad del Tolima.
- Peña, J. M. y Reinoso, G. (2016). Mariposas diurnas de tres fragmentos de bosque seco tropical del alto valle del Magdalena. Tolima-Colombia. *Revista de la Asociación Colombiana de Ciencias Biológicas*, 1(28), 57-66.
- Ramírez, L., Chacón, P. y Constantino, L. M. (2007). Diversity of diurnal butterflies (Lepidoptera: Papilionoidea and Hesperioidea) in Santiago de Cali, Valle del Cauca, Colombia. *Revista Colombiana de Entomología*, 33(1), 54-63.
- Salazar, J. A., Rodríguez, G., Constantino, L. M. y Vargas, J. I. (2019). Contribución al conocimiento del género Euselasia Hübner [1819] en Colombia y descripción de nuevos taxa (lepidoptera: riodinidae: nemeobiinae). *Boletín Científico. Centro de Museos*, 23(1), 98-187.
- Santos, J., Iserhard, C., Teixeira, M. y Romanowski, H. (2011). Fruit-feeding butterflies guide of subtropical Atlantic Forest and Araucaria Moist Forest in State of Rio Grande do Sul, Brazil. *Biota Neotropica*, *11*(3), 253-274.
- SIB (Sistema de información sobre biodiversidad de Colombia). (2021). *Biodiversidad en Colombia SIB Colombia*. Consultado el 14 de agosto del 2021. https://cifras.biodiversidad.co/.
- Tafur, A. (2020). *Mariposas (Lepidoptera: Papilionoidea) del departamento del Tolima presentes en la Colección Zoológica de la Universidad del Tolima (CZUT)* [Tesis de pregrado, Universidad del Tolima]. Repositorio de la Universidad del Tolima.
- Tobar, D., Rangel, J. O. y Andrade, M. G. (2001). Las cargas polínicas en las mariposas (Lepidoptera: Rophalocera) de la parte alta de la cuenca del río Roble-Quindío-Colombia. *Caldasia*, *23*(2), 549-557.
- Umaña, C. (2015). *Antigonus erosus (Hesperiidae).* Área de Conservación Guanacaste para el mundo. Consultado el 14 de agosto del 2021. https://n9.cl/ws7ma.

Urbano, P., Mahecha, O., Suárez, E., Izquierdo, V. y Díaz, V. (2018). Variación temporal del ensamblaje de mariposas asociadas a la Cuenca de la Calaboza, Yopal, Casanare, Colombia (Lepidoptera: Papilionoidea). SHILAP Revista de lepidopterología, 46(184), 533-550.

Valencia, C. A., Gil, Z. N. y Constantino, L. M. (2005). *Mariposas diurnas de la zona central cafeteria colombiana*. Cenicafé.

Villarreal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M. y Umaña, A. M. (2006). *Manual de métodos para el desarrollo de inventarios de biodiversidad.* Instituto de Investigación y Recursos Biológicos Alexander von Humboldt.

Warren, A. D., Davis, K. J., Stangeland, E. M., Pelham, J. P. y Grishin, N. V. (2016). *Illustrated Lists of American Butterflies.* Butterflies of America Foundation. Consultado el 14 de agosto del 2021. http://www.butterfliesofamerica.com/.

Adler, G. H., Arboledo, J. J. y Travi, B. L. (1997). Population dynamics of Didelphis marsupialis in Northern Colombia. Studies on Neotropical Fauna and Environment, 32(1), 7-11.

Aranda, J. M. (2012). *Manual para el Rastreo de Mamíferos Silvestres de México*. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio).

Asher, C. (2009). Patterns of genetic diversity in populations of two bat species (Sturnira Iudovici and Artibeus toltecus) in Cusuco National Park, Honduras. *Bioscience Horizons*, 2(2), 147-154.

Bejarano, D. A., Yate, A. y Bernal, M. H. (2007). Diversidad y distribución de la fauna quiroptera en un transecto altitudinal en el departamento del tolima, Colombia. Caldasia, 29(2), 297-308.

Bracamonte, J. C. (2013). Hábitos alimenticios de un ensamble de murciélagos insectívoros aéreos de un bosque montano en las Yungas Argentinas. Chiroptera Neotropical 19(1), 1157-1162.

Bracamonte, J. C. (2018). Protocolo de muestreo para la estimación de la diversidad de murciélagos con redes de niebla en estudios de ecología. Ecología Austral, 28(2), 446-454.

Burneo, S. F. (2020). Sturnira giannae. En: J, Brito, M.A. Camacho, V. Romero, A.F. Vallejo, A. F (eds.), *Mamíferos del Ecuador. Versión 2018.0.* Museo de Zoología, Pontificia Universidad Católica del Ecuador. Consultado el 30 de julio del 2021. https://n9.cl/2x539.

Castaño, J. H. y Botero, J. E. (2013). Murciélagos de la zona cafetera colombiana. Centro Nacional de Investigaciones de Café (Cenicafé).

- Castro, A. A. y Galindo, J. (2012). Enriching agroecosystems with fruit-producing tree species favors the abundance and richness of frugivorous and nectarivorous bats in Veracruz, Mexico. *Mammalian Biology*, 77(1), 32-40.
- CITES (Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres) (2017). *Apéndices I, II Y III.* UNEP. Consultado el 30 de julio del 2021. https://n9.cl/7ve16.
- Cuartas, C. A. y Marín. D. (2014). *Guía Ilustrada Mamíferos cañón del río Porce Antioquia*. EPM E.S.P., Universidad de Antioquia, Herbario Universidad de Antioquia.
- Cuartas, C. A. y Muñoz, J. (2003). Lista de los Mamíferos (Mammalia: Theria) del departamento de Antioquia, Colombia. *Biota Colombiana, 4*(1), 65-78.
- Díaz, M. M., Solari, S., Aguirre, L. F., Aguiar, L. M. y Barquez, R. M. (2016). *Clave de Identificación de los Murciélagos de Sudamerica*. Yerba Buena.
- Díaz, M., Flores, D. y Barquez, R. (1998). *Instrucciones para la preparación y conservación de mamíferos*. PIDBA. Programa de investigaciones de Biovidersidad Argentina.
- Duque, J. F., Ortíz, M. A., Salazar, L. y Mejía Pavony, C. A. (2009). Mamíferos: Evolución y nomenclatura dental. *Revista Estomatología*, *17*(2), 30-44.
- Durán, A. A. y Canchila, S. (2015). Ensamblaje de murciélagos (Mammalia: Chiroptera) en dos zonas del departamento de Sucre, Colombia. Acta zoológica mexicana, 31(3), 358-366.
- Echavarría, J., Jiménez, A., Palacios, L. y Rengifo, J. (2018). Diversidad y composición de murciélagos (Mammalia: Chiroptera) en el municipio de Acandí, Chocó-Colombia. *Revista Colombiana de Ciencia Animal-RECIA*, 10(1), 7-14.
- Fleming, T. H., Geiselman, C. y Kress, W. J. (2009). The evolution of bat pollination: a phylogenetic perspective. *Annals of botany*, *104*(6), 1017-1043.
- Galindo, J. (2004). Clasificación de los murciélagos de la región de Los Tuxtlas, Veracruz, respecto a su respuesta a la fragmentación del hábitat. *Acta Zoológica Mexicana*, 20(2), 239-243.
- García, L. V., Ramírez, L. A. y Reinoso, G. (2019). Mamíferos del departamento del Tolima: distribución y estado de conservación. *Revista UDCA Actualidad & Divulgación Científica, 22*(2), 1-10.
- García, L. V., Ramírez, L. A., Losada, S., Reinoso, G., Villa, F. A. y Guevara, G. (2020). Functional traits of bats associated with the use of wetlands in Colombian tropical dry forests. *Acta Chiropterologica*, *22*(2), 283-294.

Gardner, A. L. (2007). *Mammals of Southamerica: Volume 1 Marsupials, Xenarthrans, Shrews and Bats.* The University of Chicago Press.

González, E., Martínez, J. A., Juri, E., Rodales, A. L., Botto, G. y Soutullo, A. (2013). 8. Mamíferos. En: A. Soutullo, C. Clavijo y J. A. Martínez (eds.), Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares (pp. 175-207). SNAP/DINAMA/MVOTMA Y DICYT/MEC.

Gordillo, E. J., Mata, E. E., García, R., Morales, M. A., García, C. V. y Valdez, J. (2015). Mastofauna del humedal Chaschoc-Sejá en Tabasco, México. *Therya, 6*(3), 535-544.

Hernández, J. C., Chávez, C. y List, R. (2018). Diversidad y patrones de actividad de mamíferos medianos y grandes en la Reserva de la Biosfera La Encrucijada, Chiapas, México. *Revista de Biología Tropical*, 66(2), 634-646.

Hickman, C. P., Roberts, L. y Parson, A. (1998). *Principios integrales de la Zoología*. McGRAW-HILL INTERAMERICANA.

IUCN (International Union for Conservation of Nature's). (2021). *Red list.* IUCN. Consultado el 30 de julio del 2021. https://n9.cl/4iesq.

Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. y Racey, P. A. (2009). Carpe noctem: the importance of bats as bioindicators. *Endangered species research*, 8(1-2), 93-115.

Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. *Annals of the New York Academy of Sciences,* 1223(1), 1-38.

Kunz, T.H. (1996). Methods of marking bats. En: D. Wilson, F. Russell, J. Nichols, R. Rudran y M.S. Foster (eds.), *Measuring and monitoring biological diversity standard methods for mammals* (pp. 304-310). Smithsonian Institution.

Liévano, L. F. y López, H. F. (2015). Comunidad de mamíferos no voladores en un área periurbana andina, Cundinamarca, Colombia. *Acta Biológica Colombiana*, 20(2), 193-202.

Ministerio de Ambiente y Desarrollo. (2017, 15 de septiembre). Resolución 1912. Por el cual se establece el listado de las especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera que se encuentran en el territorio nacional, y se dictan otras disposiciones. https://n9.cl/vbcg.

Ministerio de ambiente, Vivienda y Desarrollo Territorial y WWF Colombia. (2009). Plan Nacional de las especies migratorias Diagnóstico e identificación de acciones para la conservación y el manejo sostenible de las especies migratorias de la biodiversidad en Colombia. MAVDT y WWF. Consultado el 30 de julio del 2021. https://n9.cl/22ngb.

Novoa, S., Cadenillas, R. y Pacheco, V. (2011). Dispersión de semillas por murciélagos frugívoros en bosques del Parque Nacional Cerros de Amotape, Tumbes, Perú. *Mastozoología neotropical*, *18*(1), 81-93.

Palencia, N. (2018). Caracterización de mamíferos voladores en el parque natural Chichaque [Tesis de pregrado, Universidad de los andes]. Repositorio Uniandes.

Ramírez, H., Suárez, A. y González, J. (2016). Cambios recientes a la lista de los mamíferos de Colombia. *Mammalogy Notes*, *3*(1-2), 1-18.

Ramírez, L. A., Rivas, M. P. y Reinoso, G. (2015). Murciélagos insectívoros de dos fragmentos de bosque seco tropical, Tolima-Colombia. Revista de la Asociación Colombiana de Ciencias Biológicas, 1(27), 32-41.

Romero, V., Merchán, R. y Boada, C. (2018). Artibeus planirostris. En: J, Brito, M.A. Camacho, V. Romero, A.F. Vallejo, A. F (eds.), *Mamíferos del Ecuador. Versión 2018.0.* Museo de Zoología, Pontificia Universidad Católica del Ecuador. Consultado el 17 de agosto del 2021. https://ny.cl/2vk2a.

Sánchez, F., Sánchez, P., y Cadena, A. (2004). Inventario de mamíferos en un bosque de los Andes Centrales de Colombia. *Caldasia, 26*(1), 291-309.

Sánchez, J., Manir, D., Botero, S. y Solari, S. (2014). *Imama. Mamíferos Silvestres del Valle de Aburrá*. Universidad de Antioquia. Medellín.

SIB (Sistema de información sobre biodiversidad de Colombia). (2021). Biodiversidad en Cifras. SIB. Consultado el 30 de julio del 2021. https://cifras.biodiversidad.co/.

Sikes, R. (2016). Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. *Journal of Mammalogy*, 97(3), 663–688.

Silveira, M., Tomas, W. M., Fischer, E., & Bordignon, M. O. (2018). Habitat occupancy by Artibeus planirostris bats in the Pantanal wetland, Brazil. *Mammalian Biology*, *91*(1), 1-6.

Tirira, D. (1998). Técnicas de campo para el estudio de mamíferos silvestres. Biología, Sistemática y Conservación de los Mamíferos del Ecuador. Museo de Zoología Centro de Biodiversidad y Ambiente. Pontifica Universidad Católica del Ecuador.

Velazco, P. M. y Patterson, B. D. (2019). Small mammals of the Mayo river basin in northern Peru, with the description of a new species of Sturnira (Chiroptera: Phyllostomidae). *Bulletin of the American Museum of Natural History, 2019*(429), 1-70.

Vera, E. A. (2017). Diversidad y abundancia de macro y meso mamíferos (Clase: Mammalia) en dos zonas con distintos grados de perturbación en el Humedal Ramsar Abras de Mantequilla (Los Ríos - Ecuador) durante marzo a diciembre del 2016 [Tesis de pregrado, Universidad de Guayaquil]. Repositorio UG.

Villa, F. A., Reinoso, G., Losada, S., Guevara, G., Montoya, D., Zuñiga, J., Parada, S., Rojas, L., Forero, J., Villabón, C., Fonseca, K. y Carvajal, C. (2019). *Inventario de biodiversidad de fauna y flora y los aspectos socioeconómicos como línea base para la declaratoria de los predios adquiridos con fines de conservación, en el municipio de Ibagué, como áreas protegidas.* CORTOLIMA, Grupo de Investigación en Zoología, Universidad del Tolima.

Wetterer, A. L., Rockman, M. V. y Simmons, N. B. (2000). Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bulletin of the american Museum of natural History, 2000(248), 1-200.

Zegarra, O. (2019). Diversidad y distribución estacional de los ensambles de quirópteros en el bosque secundario del fundo santa teresa en Satipo, Perú [Tesis de pregrado, Universidad Nacional Agraria La Molina]. Repositorio La Molina.